LEADER 03835oam 2200733I 450 001 9910812458003321 005 20240514054655.0 010 $a0-429-19160-X 010 $a1-4987-4070-7 010 $a1-4398-1327-2 024 7 $a10.1201/b10850 035 $a(CKB)2550000000064988 035 $a(EBL)800943 035 $a(OCoLC)756675740 035 $a(SSID)ssj0000539327 035 $a(PQKBManifestationID)11314720 035 $a(PQKBTitleCode)TC0000539327 035 $a(PQKBWorkID)10568628 035 $a(PQKB)10733449 035 $a(MiAaPQ)EBC800943 035 $a(Au-PeEL)EBL800943 035 $a(CaPaEBR)ebr10511313 035 $a(CaONFJC)MIL692570 035 $a(OCoLC)728102118 035 $a(FINmELB)ELB156325 035 $a(EXLCZ)992550000000064988 100 $a20180331d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aMultivariate generalized linear mixed models using R /$fDamon M. Berridge, Robert Crouchley 205 $a1st ed. 210 $aBoca Raton, Fla. $cCRC Press$dc2011 210 1$aBoca Raton, Fla. :$cCRC Press,$d2011. 215 $a1 online resource (284 p.) 300 $aA Chapman & Hall book. 311 $a1-322-61288-9 311 $a1-4398-1326-4 320 $aIncludes bibliographical references and indexes. 327 $aFront Cover; Contents; List of Figures; List of Tables; List of Applications; List of Datasets; Preface; Acknowledgments; 1. Introduction; 2.Generalized linear models for continuous/interval scale data; 3. Generalized linear models for other types of data; 4. Family of generalized linear models; 5. Mixed models for continuous/interval scale data; 6. Mixed models for binary data; 7. Mixed models for ordinal data; 8. Mixed models for count data; 9. Family of two-level generalized linear models; 10. Three-level generalized linear models; 11. Models for multivariate data 327 $a12. Models for duration and event history data13. Stayers, non-susceptibles and endpoints; 14. Handling initial conditions/state dependence in binary data; 15. Incidental parameters: an empirical comparison of fixed effects and random effects models; A. SabreR installation, SabreR commands, quadrature, estimation, endogenous effects; B. Introduction to R for Sabre; References 330 $aTo provide researchers with the ability to analyze large and complex data sets using robust models, this book presents a unified framework for a broad class of models that can be applied using a dedicated R package (Sabre). The first five chapters cover the analysis of multilevel models using univariate generalized linear mixed models (GLMMs). The next few chapters extend to multivariate GLMMs and the last chapters address more specialized topics, such as parallel computing for large-scale analyses. Each chapter includes many real-world examples implemented using Sabre as well as exercises and 606 $aR (Computer program language) 606 $aSocial sciences$xResearch$xMathematical models 606 $aSocial sciences$xResearch$xStatistical methods 606 $aSocial sciences$xResearch$xData processing 606 $aMultivariate analysis 615 0$aR (Computer program language). 615 0$aSocial sciences$xResearch$xMathematical models. 615 0$aSocial sciences$xResearch$xStatistical methods. 615 0$aSocial sciences$xResearch$xData processing. 615 0$aMultivariate analysis. 676 $a003/.35133 700 $aBerridge$b Damon M.$01651990 701 $aCrouchley$b Robert$01651991 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910812458003321 996 $aMultivariate generalized linear mixed models using R$94002323 997 $aUNINA