Vai al contenuto principale della pagina

C-Algebra Extensions and K-Homology. (AM-95), Volume 95 / / Ronald G. Douglas



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Douglas Ronald G. Visualizza persona
Titolo: C-Algebra Extensions and K-Homology. (AM-95), Volume 95 / / Ronald G. Douglas Visualizza cluster
Pubblicazione: Princeton, NJ : , : Princeton University Press, , [2016]
©1980
Descrizione fisica: 1 online resource (94 pages) : illustrations
Disciplina: 512/.55
Soggetto topico: C*-algebras
K-theory
Algebra, Homological
Soggetto non controllato: Addition
Affine transformation
Algebraic topology
Atiyah–Singer index theorem
Automorphism
Banach algebra
Bijection
Boundary value problem
Bundle map
C*-algebra
Calculation
Cardinal number
Category of abelian groups
Characteristic class
Chern class
Clifford algebra
Coefficient
Cohomology
Compact operator
Completely positive map
Contact geometry
Continuous function
Corollary
Diagram (category theory)
Diffeomorphism
Differentiable manifold
Differential operator
Dimension (vector space)
Dimension function
Dimension
Direct integral
Direct proof
Eigenvalues and eigenvectors
Equivalence class
Equivalence relation
Essential spectrum
Euler class
Exact sequence
Existential quantification
Fiber bundle
Finite group
Fredholm operator
Fredholm
Free abelian group
Fundamental class
Fundamental group
Hardy space
Hermann Weyl
Hilbert space
Homological algebra
Homology (mathematics)
Homomorphism
Homotopy
Ideal (ring theory)
Inner automorphism
Irreducible representation
K-group
K-theory
Lebesgue space
Locally compact group
Maximal compact subgroup
Michael Atiyah
Monomorphism
Morphism
Natural number
Natural transformation
Normal operator
Operator algebra
Operator norm
Operator theory
Orthogonal group
Pairing
Piecewise linear manifold
Polynomial
Pontryagin class
Positive and negative parts
Positive map
Pseudo-differential operator
Quaternion
Quotient algebra
Self-adjoint operator
Self-adjoint
Simply connected space
Smooth structure
Special case
Stein manifold
Strong topology
Subalgebra
Subgroup
Subset
Summation
Tangent bundle
Theorem
Todd class
Topology
Torsion subgroup
Unitary operator
Universal coefficient theorem
Variable (mathematics)
Von Neumann algebra
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Frontmatter -- Contents -- Preface -- Chapter 1. An Overview -- Chapter 2. Ext as a Group -- Chapter 3. Ext as a Homotopy Functor -- Chapter 4. Generalized Homology Theory and Periodicity -- Chapter 5. Ext as K-Homology -- Chapter 6. Index Theorems snd Novikov's Higher Signatures -- References -- Index -- Index of Symbols -- Backmatter
Sommario/riassunto: Recent developments in diverse areas of mathematics suggest the study of a certain class of extensions of C*-algebras. Here, Ronald Douglas uses methods from homological algebra to study this collection of extensions. He first shows that equivalence classes of the extensions of the compact metrizable space X form an abelian group Ext (X). Second, he shows that the correspondence X ⃗ Ext (X) defines a homotopy invariant covariant functor which can then be used to define a generalized homology theory. Establishing the periodicity of order two, the author shows, following Atiyah, that a concrete realization of K-homology is obtained.
Titolo autorizzato: -Algebra Extensions and K-Homology. (AM-95), Volume 95  Visualizza cluster
ISBN: 1-4008-8146-3
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910154752903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Annals of mathematics studies ; ; Number 95.