Vai al contenuto principale della pagina
Autore: | Douglas Ronald G. |
Titolo: | C-Algebra Extensions and K-Homology. (AM-95), Volume 95 / / Ronald G. Douglas |
Pubblicazione: | Princeton, NJ : , : Princeton University Press, , [2016] |
©1980 | |
Descrizione fisica: | 1 online resource (94 pages) : illustrations |
Disciplina: | 512/.55 |
Soggetto topico: | C*-algebras |
K-theory | |
Algebra, Homological | |
Soggetto non controllato: | Addition |
Affine transformation | |
Algebraic topology | |
Atiyah–Singer index theorem | |
Automorphism | |
Banach algebra | |
Bijection | |
Boundary value problem | |
Bundle map | |
C*-algebra | |
Calculation | |
Cardinal number | |
Category of abelian groups | |
Characteristic class | |
Chern class | |
Clifford algebra | |
Coefficient | |
Cohomology | |
Compact operator | |
Completely positive map | |
Contact geometry | |
Continuous function | |
Corollary | |
Diagram (category theory) | |
Diffeomorphism | |
Differentiable manifold | |
Differential operator | |
Dimension (vector space) | |
Dimension function | |
Dimension | |
Direct integral | |
Direct proof | |
Eigenvalues and eigenvectors | |
Equivalence class | |
Equivalence relation | |
Essential spectrum | |
Euler class | |
Exact sequence | |
Existential quantification | |
Fiber bundle | |
Finite group | |
Fredholm operator | |
Fredholm | |
Free abelian group | |
Fundamental class | |
Fundamental group | |
Hardy space | |
Hermann Weyl | |
Hilbert space | |
Homological algebra | |
Homology (mathematics) | |
Homomorphism | |
Homotopy | |
Ideal (ring theory) | |
Inner automorphism | |
Irreducible representation | |
K-group | |
K-theory | |
Lebesgue space | |
Locally compact group | |
Maximal compact subgroup | |
Michael Atiyah | |
Monomorphism | |
Morphism | |
Natural number | |
Natural transformation | |
Normal operator | |
Operator algebra | |
Operator norm | |
Operator theory | |
Orthogonal group | |
Pairing | |
Piecewise linear manifold | |
Polynomial | |
Pontryagin class | |
Positive and negative parts | |
Positive map | |
Pseudo-differential operator | |
Quaternion | |
Quotient algebra | |
Self-adjoint operator | |
Self-adjoint | |
Simply connected space | |
Smooth structure | |
Special case | |
Stein manifold | |
Strong topology | |
Subalgebra | |
Subgroup | |
Subset | |
Summation | |
Tangent bundle | |
Theorem | |
Todd class | |
Topology | |
Torsion subgroup | |
Unitary operator | |
Universal coefficient theorem | |
Variable (mathematics) | |
Von Neumann algebra | |
Note generali: | Bibliographic Level Mode of Issuance: Monograph |
Nota di bibliografia: | Includes bibliographical references and index. |
Nota di contenuto: | Frontmatter -- Contents -- Preface -- Chapter 1. An Overview -- Chapter 2. Ext as a Group -- Chapter 3. Ext as a Homotopy Functor -- Chapter 4. Generalized Homology Theory and Periodicity -- Chapter 5. Ext as K-Homology -- Chapter 6. Index Theorems snd Novikov's Higher Signatures -- References -- Index -- Index of Symbols -- Backmatter |
Sommario/riassunto: | Recent developments in diverse areas of mathematics suggest the study of a certain class of extensions of C*-algebras. Here, Ronald Douglas uses methods from homological algebra to study this collection of extensions. He first shows that equivalence classes of the extensions of the compact metrizable space X form an abelian group Ext (X). Second, he shows that the correspondence X ⃗ Ext (X) defines a homotopy invariant covariant functor which can then be used to define a generalized homology theory. Establishing the periodicity of order two, the author shows, following Atiyah, that a concrete realization of K-homology is obtained. |
Titolo autorizzato: | -Algebra Extensions and K-Homology. (AM-95), Volume 95 |
ISBN: | 1-4008-8146-3 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910154752903321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |