Vai al contenuto principale della pagina
| Autore: |
Milnor John
|
| Titolo: |
Singular Points of Complex Hypersurfaces. (AM-61), Volume 61 / / John Milnor
|
| Pubblicazione: | Princeton, NJ : , : Princeton University Press, , [2016] |
| ©1969 | |
| Descrizione fisica: | 1 online resource (137 pages) : illustrations |
| Disciplina: | 516.35 |
| Soggetto topico: | Geometry, Algebraic |
| Soggetto non controllato: | 3-sphere |
| Addition | |
| Alexander polynomial | |
| Algebraic curve | |
| Algebraic equation | |
| Algebraic geometry | |
| Analytic manifold | |
| Apply | |
| Approximation | |
| Binary icosahedral group | |
| Boundary (topology) | |
| Characteristic polynomial | |
| Codimension | |
| Coefficient | |
| Commutator subgroup | |
| Commutator | |
| Compact group | |
| Complex analysis | |
| Complex number | |
| Complex projective plane | |
| Conjecture | |
| Contradiction | |
| Coordinate space | |
| Coordinate system | |
| Derivative | |
| Differentiable manifold | |
| Dimension | |
| Directional derivative | |
| Euclidean space | |
| Euler number | |
| Exact sequence | |
| Existential quantification | |
| Exotic sphere | |
| Fiber bundle | |
| Fibration | |
| Field of fractions | |
| Finite group | |
| Finite set | |
| Finitely generated group | |
| Formal power series | |
| Free abelian group | |
| Free group | |
| Fundamental group | |
| Geometry | |
| Hermitian matrix | |
| Hessian matrix | |
| Homology (mathematics) | |
| Homology sphere | |
| Homotopy sphere | |
| Homotopy | |
| Hopf fibration | |
| Hypersurface | |
| Icosahedron | |
| Implicit function theorem | |
| Integer | |
| Integral domain | |
| Inverse function theorem | |
| Knot group | |
| Knot theory | |
| Line segment | |
| Linear combination | |
| Linear map | |
| Manifold | |
| Minor (linear algebra) | |
| Morse theory | |
| N-sphere | |
| Neighbourhood (mathematics) | |
| Normal (geometry) | |
| Normal subgroup | |
| Open set | |
| Orientability | |
| Parametrization | |
| Polynomial | |
| Prime ideal | |
| Principal ideal | |
| Projective space | |
| Real number | |
| Regular icosahedron | |
| Retract | |
| Riemannian manifold | |
| Second derivative | |
| Sign (mathematics) | |
| Simply connected space | |
| Smoothness | |
| Special case | |
| Submanifold | |
| Subset | |
| Surjective function | |
| Tangent space | |
| Theorem | |
| Topological manifold | |
| Topology | |
| Transcendence degree | |
| Tubular neighborhood | |
| Unit interval | |
| Unit sphere | |
| Unit vector | |
| Variable (mathematics) | |
| Vector field | |
| Vector space | |
| Nota di bibliografia: | Includes bibliographical references. |
| Nota di contenuto: | Frontmatter -- PREFACE -- CONTENTS -- §1. INTRODUCTION -- §2. ELEMENTARY FACTS ABOUT REAL OR COMPLEX ALGEBRAIC SETS -- §3. THE CURVE SELECTION LEMMA -- §4. THE FIBRATION THEOREM -- §5. THE TOPOLOGY OF THE FIBERAND OF K -- §6. THE CASE OF AN ISOLATED CRITICAL POINT -- §7. THE MIDDLE BETTI NUMBER OF THE FIBER -- §8. IS K A TOPOLOGICAL SPHERE ? -- §9. BRIESKORN VARIETIES AND WEIGHTED HOMOGENEOUS POLYNOMIALS -- § 10. THE CLASSICAL CASE: CURVES IN C2 -- §11. A FIBRATION THEOREM FOR REAL SINGULARITIES -- APPENDIX A. WHITNEY'S FINITENESS THEOREM FOR ALGEBRAIC SETS -- APPENDIX B. THE MULTIPLICITY OF AN ISOLATED SOLUTION OF ANALYTIC EQUATIONS -- BIBLIOGRAPHY |
| Sommario/riassunto: | The description for this book, Singular Points of Complex Hypersurfaces. (AM-61), Volume 61, will be forthcoming. |
| Titolo autorizzato: | Singular Points of Complex Hypersurfaces. (AM-61), Volume 61 ![]() |
| ISBN: | 1-4008-8181-1 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910154743603321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |