LEADER 05434nam 22016575 450 001 9910154743603321 005 20220411150627.0 010 $a1-4008-8181-1 024 7 $a10.1515/9781400881819 035 $a(CKB)3710000000631381 035 $a(MiAaPQ)EBC4738588 035 $a(DE-B1597)468036 035 $a(OCoLC)979968793 035 $a(DE-B1597)9781400881819 035 $a(EXLCZ)993710000000631381 100 $a20190708d2016 fg 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aSingular Points of Complex Hypersurfaces. (AM-61), Volume 61 /$fJohn Milnor 210 1$aPrinceton, NJ :$cPrinceton University Press,$d[2016] 210 4$d©1969 215 $a1 online resource (137 pages) $cillustrations 225 0 $aAnnals of Mathematics Studies ;$v245 311 $a0-691-08065-8 320 $aIncludes bibliographical references. 327 $tFrontmatter --$tPREFACE --$tCONTENTS --$t§1. INTRODUCTION --$t§2. ELEMENTARY FACTS ABOUT REAL OR COMPLEX ALGEBRAIC SETS --$t§3. THE CURVE SELECTION LEMMA --$t§4. THE FIBRATION THEOREM --$t§5. THE TOPOLOGY OF THE FIBERAND OF K --$t§6. THE CASE OF AN ISOLATED CRITICAL POINT --$t§7. THE MIDDLE BETTI NUMBER OF THE FIBER --$t§8. IS K A TOPOLOGICAL SPHERE ? --$t§9. BRIESKORN VARIETIES AND WEIGHTED HOMOGENEOUS POLYNOMIALS --$t§ 10. THE CLASSICAL CASE: CURVES IN C2 --$t§11. A FIBRATION THEOREM FOR REAL SINGULARITIES --$tAPPENDIX A. WHITNEY'S FINITENESS THEOREM FOR ALGEBRAIC SETS --$tAPPENDIX B. THE MULTIPLICITY OF AN ISOLATED SOLUTION OF ANALYTIC EQUATIONS --$tBIBLIOGRAPHY 330 $aThe description for this book, Singular Points of Complex Hypersurfaces. (AM-61), Volume 61, will be forthcoming. 410 0$aAnnals of mathematics studies ;$vNumber 61. 606 $aGeometry, Algebraic 610 $a3-sphere. 610 $aAddition. 610 $aAlexander polynomial. 610 $aAlgebraic curve. 610 $aAlgebraic equation. 610 $aAlgebraic geometry. 610 $aAnalytic manifold. 610 $aApply. 610 $aApproximation. 610 $aBinary icosahedral group. 610 $aBoundary (topology). 610 $aCharacteristic polynomial. 610 $aCodimension. 610 $aCoefficient. 610 $aCommutator subgroup. 610 $aCommutator. 610 $aCompact group. 610 $aComplex analysis. 610 $aComplex number. 610 $aComplex projective plane. 610 $aConjecture. 610 $aContradiction. 610 $aCoordinate space. 610 $aCoordinate system. 610 $aDerivative. 610 $aDifferentiable manifold. 610 $aDimension. 610 $aDirectional derivative. 610 $aEuclidean space. 610 $aEuler number. 610 $aExact sequence. 610 $aExistential quantification. 610 $aExotic sphere. 610 $aFiber bundle. 610 $aFibration. 610 $aField of fractions. 610 $aFinite group. 610 $aFinite set. 610 $aFinitely generated group. 610 $aFormal power series. 610 $aFree abelian group. 610 $aFree group. 610 $aFundamental group. 610 $aGeometry. 610 $aHermitian matrix. 610 $aHessian matrix. 610 $aHomology (mathematics). 610 $aHomology sphere. 610 $aHomotopy sphere. 610 $aHomotopy. 610 $aHopf fibration. 610 $aHypersurface. 610 $aIcosahedron. 610 $aImplicit function theorem. 610 $aInteger. 610 $aIntegral domain. 610 $aInverse function theorem. 610 $aKnot group. 610 $aKnot theory. 610 $aLine segment. 610 $aLinear combination. 610 $aLinear map. 610 $aManifold. 610 $aMinor (linear algebra). 610 $aMorse theory. 610 $aN-sphere. 610 $aNeighbourhood (mathematics). 610 $aNormal (geometry). 610 $aNormal subgroup. 610 $aOpen set. 610 $aOrientability. 610 $aParametrization. 610 $aPolynomial. 610 $aPrime ideal. 610 $aPrincipal ideal. 610 $aProjective space. 610 $aReal number. 610 $aRegular icosahedron. 610 $aRetract. 610 $aRiemannian manifold. 610 $aSecond derivative. 610 $aSign (mathematics). 610 $aSimply connected space. 610 $aSmoothness. 610 $aSpecial case. 610 $aSubmanifold. 610 $aSubset. 610 $aSurjective function. 610 $aTangent space. 610 $aTheorem. 610 $aTopological manifold. 610 $aTopology. 610 $aTranscendence degree. 610 $aTubular neighborhood. 610 $aUnit interval. 610 $aUnit sphere. 610 $aUnit vector. 610 $aVariable (mathematics). 610 $aVector field. 610 $aVector space. 615 0$aGeometry, Algebraic. 676 $a516.35 700 $aMilnor$b John$040532 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910154743603321 996 $aSingular Points of Complex Hypersurfaces. (AM-61), Volume 61$92786623 997 $aUNINA