Vai al contenuto principale della pagina

Sobolev gradients and differential equations / / J. W. Neuberger



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Neuberger J. W (John W.), <1934-> Visualizza persona
Titolo: Sobolev gradients and differential equations / / J. W. Neuberger Visualizza cluster
Pubblicazione: Berlin, Germany ; ; New York, New York : , : Springer, , [1997]
©1997
Edizione: 1st ed. 1997.
Descrizione fisica: 1 online resource (VIII, 152 p.)
Disciplina: 515/.353
Soggetto topico: Differential equations - Numerical solutions
Sobolev gradients
Classificazione: 65N30
35A15
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di bibliografia: Includes bibliographical references (pages [145]-149) and index.
Nota di contenuto: Several gradients -- Comparison of two gradients -- Continuous steepest descent in Hilbert space: Linear case -- Continuous steepest descent in Hilbert space: Nonlinear case -- Orthogonal projections, Adjoints and Laplacians -- Introducing boundary conditions -- Newton's method in the context of Sobolev gradients -- Finite difference setting: the inner product case -- Sobolev gradients for weak solutions: Function space case -- Sobolev gradients in non-inner product spaces: Introduction -- The superconductivity equations of Ginzburg-Landau -- Minimal surfaces -- Flow problems and non-inner product Sobolev spaces -- Foliations as a guide to boundary conditions -- Some related iterative methods for differential equations -- A related analytic iteration method -- Steepest descent for conservation equations -- A sample computer code with notes.
Sommario/riassunto: A Sobolev gradient of a real-valued functional is a gradient of that functional taken relative to the underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. Equal emphasis is placed on numerical and theoretical matters. Several concrete applications are made to illustrate the method. These applications include (1) Ginzburg-Landau functionals of superconductivity, (2) problems of transonic flow in which type depends locally on nonlinearities, and (3) minimal surface problems. Sobolev gradient constructions rely on a study of orthogonal projections onto graphs of closed densely defined linear transformations from one Hilbert space to another. These developments use work of Weyl, von Neumann and Beurling.
Titolo autorizzato: Sobolev gradients and differential equations  Visualizza cluster
ISBN: 3-540-69594-X
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910146292203321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Mathematics, . 0075-8434 ; ; 1670