Vai al contenuto principale della pagina
Autore: | Neuberger J. W (John W.), <1934-> |
Titolo: | Sobolev gradients and differential equations / / J. W. Neuberger |
Pubblicazione: | Berlin, Germany ; ; New York, New York : , : Springer, , [1997] |
©1997 | |
Edizione: | 1st ed. 1997. |
Descrizione fisica: | 1 online resource (VIII, 152 p.) |
Disciplina: | 515/.353 |
Soggetto topico: | Differential equations - Numerical solutions |
Sobolev gradients | |
Classificazione: | 65N30 |
35A15 | |
Note generali: | Bibliographic Level Mode of Issuance: Monograph |
Nota di bibliografia: | Includes bibliographical references (pages [145]-149) and index. |
Nota di contenuto: | Several gradients -- Comparison of two gradients -- Continuous steepest descent in Hilbert space: Linear case -- Continuous steepest descent in Hilbert space: Nonlinear case -- Orthogonal projections, Adjoints and Laplacians -- Introducing boundary conditions -- Newton's method in the context of Sobolev gradients -- Finite difference setting: the inner product case -- Sobolev gradients for weak solutions: Function space case -- Sobolev gradients in non-inner product spaces: Introduction -- The superconductivity equations of Ginzburg-Landau -- Minimal surfaces -- Flow problems and non-inner product Sobolev spaces -- Foliations as a guide to boundary conditions -- Some related iterative methods for differential equations -- A related analytic iteration method -- Steepest descent for conservation equations -- A sample computer code with notes. |
Sommario/riassunto: | A Sobolev gradient of a real-valued functional is a gradient of that functional taken relative to the underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. Equal emphasis is placed on numerical and theoretical matters. Several concrete applications are made to illustrate the method. These applications include (1) Ginzburg-Landau functionals of superconductivity, (2) problems of transonic flow in which type depends locally on nonlinearities, and (3) minimal surface problems. Sobolev gradient constructions rely on a study of orthogonal projections onto graphs of closed densely defined linear transformations from one Hilbert space to another. These developments use work of Weyl, von Neumann and Beurling. |
Titolo autorizzato: | Sobolev gradients and differential equations |
ISBN: | 3-540-69594-X |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910146292203321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |