LEADER 02185nam0 22005053i 450 001 VAN00130774 005 20241125022855.461 017 70$2N$a9783030256746 100 $a20200918d2020 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 181 $ai$b e 182 $ab 200 1 $aGoverning Arctic Seas: Regional Lessons from the Bering Strait and Barents Sea$eVolume 1$fedited by Oran R. Young, Paul Arthur Berkman, Alexander N. Vylegzhanin 210 $aCham$cSpringer$cScience Diplomacy Center$d2020 215 $a XLII, 358 p.$cill.$d24 cm 410 1$1001VAN00283387$12001 $aInformed Decisionmaking for Sustainability$1210 $aCham$cSpringer$v1 610 $aArctic Ocean$9KW:K 610 $aCoastal-marine sustainability$9KW:K 610 $aCollaboration in the polar region$9KW:K 610 $aDecision making$9KW:K 610 $aEnvironmental Protection$9KW:K 610 $aEnvironmental Security$9KW:K 610 $aHolistic approach$9KW:K 610 $aInternational cooperation in the Arctic$9KW:K 610 $aMaritime Infrastructure$9KW:K 610 $aPan-arctic management$9KW:K 610 $aPolar geography$9KW:K 610 $aScience diplomacy$9KW:K 610 $aSustainable infrastructure development$9KW:K 620 $aCH$dCham$3VANL001889 702 1$aBerkman$bPaul Arthur$3VANV104464 702 1$aVylegzhanin$bAlexander N.$3VANV104465 702 1$aYoung$bOran R.$3VANV104463 712 $aScience Diplomacy Center $3VANV236840$4650 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20241129$gRICA 856 4 $uhttps://doi.org/10.1007/978-3-030-25674-6$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$1IT-CE0105$2VAN00 912 $fN 912 $aVAN00130774 950 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$d00PREST E-BOOK SBA GIUR $e00EBG130774 20200918 996 $aGoverning Arctic Seas: Regional Lessons from the Bering Strait and Barents Sea$91756679 997 $aUNICAMPANIA LEADER 03749nam 22006735 450 001 9910146292203321 005 20250801064914.0 010 $a3-540-69594-X 024 7 $a10.1007/BFb0092831 035 $a(CKB)1000000000437343 035 $a(SSID)ssj0000326692 035 $a(PQKBManifestationID)12069599 035 $a(PQKBTitleCode)TC0000326692 035 $a(PQKBWorkID)10296698 035 $a(PQKB)10963532 035 $a(DE-He213)978-3-540-69594-3 035 $a(MiAaPQ)EBC5577146 035 $a(MiAaPQ)EBC6691771 035 $a(Au-PeEL)EBL5577146 035 $a(OCoLC)1066180869 035 $a(Au-PeEL)EBL6691771 035 $a(PPN)155195549 035 $a(EXLCZ)991000000000437343 100 $a20121227d1997 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aSobolev Gradients and Differential Equations /$fby john neuberger 205 $a1st ed. 1997. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d1997. 215 $a1 online resource (VIII, 152 p.) 225 1 $aLecture Notes in Mathematics,$x1617-9692 ;$v1670 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a3-540-63537-8 320 $aIncludes bibliographical references (pages [145]-149) and index. 327 $aSeveral gradients -- Comparison of two gradients -- Continuous steepest descent in Hilbert space: Linear case -- Continuous steepest descent in Hilbert space: Nonlinear case -- Orthogonal projections, Adjoints and Laplacians -- Introducing boundary conditions -- Newton's method in the context of Sobolev gradients -- Finite difference setting: the inner product case -- Sobolev gradients for weak solutions: Function space case -- Sobolev gradients in non-inner product spaces: Introduction -- The superconductivity equations of Ginzburg-Landau -- Minimal surfaces -- Flow problems and non-inner product Sobolev spaces -- Foliations as a guide to boundary conditions -- Some related iterative methods for differential equations -- A related analytic iteration method -- Steepest descent for conservation equations -- A sample computer code with notes. 330 $aA Sobolev gradient of a real-valued functional is a gradient of that functional taken relative to the underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. Equal emphasis is placed on numerical and theoretical matters. Several concrete applications are made to illustrate the method. These applications include (1) Ginzburg-Landau functionals of superconductivity, (2) problems of transonic flow in which type depends locally on nonlinearities, and (3) minimal surface problems. Sobolev gradient constructions rely on a study of orthogonal projections onto graphs of closed densely defined linear transformations from one Hilbert space to another. These developments use work of Weyl, von Neumann and Beurling. 410 0$aLecture Notes in Mathematics,$x1617-9692 ;$v1670 606 $aDifferential equations 606 $aNumerical analysis 606 $aDifferential Equations 606 $aNumerical Analysis 615 0$aDifferential equations. 615 0$aNumerical analysis. 615 14$aDifferential Equations. 615 24$aNumerical Analysis. 676 $a515/.353 686 $a65N30$2msc 686 $a35A15$2msc 700 $aNeuberger$b J. W$g(John W.),$f1934-$061864 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910146292203321 996 $aSobolev gradients and differential equations$9374787 997 $aUNINA