| Autore: |
Wehrung, Friedrich
|
| Titolo: |
Refinement monoids, equidecomposability types, and Boolean inverse semigroups / Friedrich Wehrung
|
| Pubblicazione: |
VII, 240 p., : ill. ; 24 cm |
| Edizione: |
[Cham] : Springer, 2017 |
| Descrizione fisica: |
Pubblicazione in formato elettronico |
| Soggetto topico: |
16E20 - Grothendieck groups, $K$-theory, etc. [MSC 2020] |
| |
43A07 - Means on groups, semigroups, etc.; amenable groups [MSC 2020] |
| |
08B10 - Congruence modularity, congruence distributivity [MSC 2020] |
| |
08Axx - Algebraic structures [MSC 2020] |
| |
20M18 - Inverse semigroups [MSC 2020] |
| |
18A30 - Limits and colimits (products, sums, directed limits, pushouts, fiber products, equalizers, kernels, ends and coends, etc.) [MSC 2020] |
| |
20M14 - Commutative semigroups [MSC 2020] |
| |
06E15 - Stone spaces (Boolean spaces) and related structures [MSC 2020] |
| |
19A31 - $K_0$ of group rings and orders [MSC 2020] |
| |
46L80 - $K$-theory and operator algebras (including cyclic theory) [MSC 2020] |
| |
06F05 - Ordered semigroups and monoids [MSC 2020] |
| |
20M25 - Semigroup rings, multiplicative semigroups of rings [MSC 2020] |
| |
28B10 - Group- or semigroup-valued set functions, measures and integrals [MSC 2020] |
| |
08Cxx - Other classes of algebras [MSC 2020] |
| |
16E50 - von Neumann regular rings and generalizations (associative algebraic aspects) [MSC 2020] |
| |
19A49 - $K_0$ of other rings [MSC 2020] |
| Titolo autorizzato: |
Refinement monoids, equidecomposability types, and Boolean inverse semigroups  |
| ISBN: |
8-3-319-61599-8 |
| Formato: |
Materiale a stampa  |
| Livello bibliografico |
Monografia |
| Lingua di pubblicazione: |
Inglese |
| Record Nr.: | SUN0110705 |
| Lo trovi qui: | Univ. Vanvitelli |
| Localizzazioni e accesso elettronico |
http://dx.doi.org/10.1007/978-3-319-61599-8 |
| Opac: |
Controlla la disponibilità qui |