LEADER 01155nam--2200385---450- 001 990005876110203316 005 20130725131708.0 010 $a978-88-15-24565-6 035 $a000587611 035 $aUSA01000587611 035 $a(ALEPH)000587611USA01 035 $a000587611 100 $a20130725d2013----km-y0itay50------ba 101 $aita 102 $aIT 105 $a||||||||001yy 200 1 $a<> partiti e la democrazia$eper una rilettura dell'art. 49 della Costituzione$fSalvatore Bonfiglio 210 $aBologna$cIl Mulino$d2013 215 $a93 p.$d19 cm 225 2 $aIntroduzioni$iDiritto 410 0$12001$aIntroduzioni$iDiritto 454 1$12001 461 1$1001-------$12001 606 0 $aPartiti$xDiritto costituzionale$2BNCF 676 $a342.450854 700 1$aBONFIGLIO,$bSalvatore$0232570 801 0$aIT$bsalbc$gISBD 912 $a990005876110203316 951 $aXXIV.2.B. 251$b77537 G.$cXXIV.2.B.$d00342448 959 $aBK 969 $aGIU 979 $aFIORELLA$b90$c20130725$lUSA01$h1311 979 $aFIORELLA$b90$c20130725$lUSA01$h1317 996 $aPartiti e la democrazia$9825877 997 $aUNISA LEADER 02778nam0 2200469 i 450 001 SUN0110705 005 20170914023635.320 010 $a8-3-319-61599-8$d0.00 100 $a20170914d2017 |0engc50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $a*Refinement monoids, equidecomposability types, and Boolean inverse semigroups$fFriedrich Wehrung 205 $a[Cham] : Springer, 2017 210 $aVII$d240 p.$cill. ; 24 cm 215 $aPubblicazione in formato elettronico 461 1$1001SUN0102250$12001 $a*Lecture notes in mathematics$v2188$1210 $aBerlin [etc.]$cSpringer$d1964-$1215 $aDal 2011 i volumi sono disponibili in formato elettronico. 606 $a16E20$xGrothendieck groups, $K$-theory, etc. [MSC 2020]$2MF$3SUNC019736 606 $a43A07$xMeans on groups, semigroups, etc.; amenable groups [MSC 2020]$2MF$3SUNC021706 606 $a08B10$xCongruence modularity, congruence distributivity [MSC 2020]$2MF$3SUNC022276 606 $a08Axx$xAlgebraic structures [MSC 2020]$2MF$3SUNC022419 606 $a20M18$xInverse semigroups [MSC 2020]$2MF$3SUNC023844 606 $a18A30$xLimits and colimits (products, sums, directed limits, pushouts, fiber products, equalizers, kernels, ends and coends, etc.) [MSC 2020]$2MF$3SUNC029032 606 $a20M14$xCommutative semigroups [MSC 2020]$2MF$3SUNC029151 606 $a06E15$xStone spaces (Boolean spaces) and related structures [MSC 2020]$2MF$3SUNC029542 606 $a19A31$x$K_0$ of group rings and orders [MSC 2020]$2MF$3SUNC030740 606 $a46L80$x$K$-theory and operator algebras (including cyclic theory) [MSC 2020]$2MF$3SUNC031147 606 $a06F05$xOrdered semigroups and monoids [MSC 2020]$2MF$3SUNC031189 606 $a20M25$xSemigroup rings, multiplicative semigroups of rings [MSC 2020]$2MF$3SUNC033168 606 $a28B10$xGroup- or semigroup-valued set functions, measures and integrals [MSC 2020]$2MF$3SUNC033169 606 $a08Cxx$xOther classes of algebras [MSC 2020]$2MF$3SUNC033170 606 $a16E50$xvon Neumann regular rings and generalizations (associative algebraic aspects) [MSC 2020]$2MF$3SUNC033171 606 $a19A49$x$K_0$ of other rings [MSC 2020]$2MF$3SUNC033172 620 $aCH$dCham$3SUNL001889 700 1$aWehrung$b, Friedrich$3SUNV071072$0512591 712 $aSpringer$3SUNV000178$4650 801 $aIT$bSOL$c20201012$gRICA 856 4 $uhttp://dx.doi.org/10.1007/978-3-319-61599-8 912 $aSUN0110705 950 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book $e08LNM2188 20170914 996 $aRefinement monoids, equidecomposability types, and Boolean inverse semigroups$91466433 997 $aUNICAMPANIA