Vai al contenuto principale della pagina

Cauchy Problem for Differential Operators with Double Characteristics [e-book]: Non-Effectively Hyperbolic Characteristics / Tatsuo Nishitani



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Nishitani, Tatsuo Visualizza persona
Titolo: Cauchy Problem for Differential Operators with Double Characteristics [e-book]: Non-Effectively Hyperbolic Characteristics / Tatsuo Nishitani Visualizza cluster
Descrizione fisica: 1 online resource (viii, 211 pages) : illustrations
Disciplina: 515.353
Soggetto topico: Differential equations, Partial
Ordinary Differential Equations
Classificazione: AMS 35-02
LC QA370-380
Nota di bibliografia: Includes bibliographical references and index
Nota di contenuto: 1. Introduction ; 2 Non-effectively hyperbolic characteristics.- 3 Geometry of bicharacteristics.- 4 Microlocal energy estimates and well-posedness.- 5 Cauchy problemno tangent bicharacteristics. - 6 Tangent bicharacteristics and ill-posedness.- 7 Cauchy problem in the Gevrey classes.- 8 Ill-posed Cauchy problem, revisited ; References
Sommario/riassunto: Combining geometrical and microlocal tools, this monograph gives detailed proofs of many well/ill-posed results related to the Cauchy problem for di erential operators with non-e ectively hyperbolic double characteristics. Previously scattered over numerous di erent publications, the results are presented from the viewpoint that the Hamilton map and the geometry of bicharacteristics completely characterizes the well/ill-posedness of the Cauchy problem. A doubly characteristic point of a di erential operator P of order m (i.e. one where Pm = dPm = 0) is e ectively hyperbolic if the Hamilton map FPm has real non-zero eigenvalues. When the characteristics are at most double and every double characteristic is e ectively hyperbolic, the Cauchy problem for P can be solved for arbitrary lower order terms. If there is a non-e ectively hyperbolic characteristic, solvability requires the subprincipal symbol of P to lie between Pæj and P æj , where iæj are the positive imaginary eigenvalues of FPm . Moreover, if 0 is an eigenvalue of FPm with corresponding 4 ₉ 4 Jordan block, the spectral structure of FPm is insucient to determine whether the Cauchy problem is well-posed and the behavior of bicharacteristics near the doubly characteristic manifold plays a crucial role
ISBN: 9783319676128
3319676121
9783319676111
3319676113
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 991003576719707536
Lo trovi qui: Univ. del Salento
Localizzazioni e accesso elettronico https://link.springer.com/book/10.1007/978-3-319-67612-8#toc
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Mathematics, 0075-8434 ; 2202
Altra ed. diverso supporto: Printed edition: 9783319676111