Vai al contenuto principale della pagina

THz and Sub-THz CMOS Electronics for High-Speed Telecommunication : Architectures and Circuits for Future 6G Transceivers



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: D'heer Carl Visualizza persona
Titolo: THz and Sub-THz CMOS Electronics for High-Speed Telecommunication : Architectures and Circuits for Future 6G Transceivers Visualizza cluster
Pubblicazione: Cham : , : Springer, , 2024
©2024
Edizione: 1st ed.
Descrizione fisica: 1 online resource (417 pages)
Altri autori: ReynaertPatrick  
Nota di contenuto: Intro -- Preface -- Contents -- List of Abbreviations -- List of Symbols -- 1 Introduction -- 1.1 High-Speed Telecommunication: Evolution and Trends -- 1.1.1 A Brief History of Electronic Telecommunication -- 1.1.1.1 From Smoke Signals to Radio -- 1.1.1.2 The Start of the Semiconductor Era -- 1.1.2 Classification of Telecommunication Methods -- 1.1.2.1 Wireline Communication -- 1.1.2.2 Wireless Communication -- 1.1.3 Recent Trends in the World of Telecommunications -- 1.1.3.1 Wireline Communication -- 1.1.3.2 Wireless Communication -- 1.1.4 The Never-Ending Need for Speed and Efficiency -- 1.2 The THz and Sub-THz Spectrum -- 1.2.1 Overview of the Electromagnetic Spectrum -- 1.2.2 THz, Sub-THz, and mm-Wave -- 1.3 Telecommunication at (Sub-)THz Frequencies -- 1.3.1 Benefits -- 1.3.1.1 Modulation Bandwidth -- 1.3.1.2 Form Factor -- 1.3.2 Challenges -- 1.3.2.1 Propagation Loss -- 1.3.2.2 Transmitter and Receiver Performance -- 1.3.3 Applications -- 1.3.3.1 Considerations for (Sub-)THz Telecommunication -- 1.3.3.2 Wireless Communication -- 1.3.3.3 Wireline Communication -- 1.4 Why CMOS Electronics? -- 1.5 Outline of the Book -- 2 Fundamentals of Telecommunication -- 2.1 Mathematics -- 2.1.1 Introduction to Information Theory -- 2.1.1.1 What Is Information? -- 2.1.1.2 Nyquist: Maximum Symbol Rate -- 2.1.1.3 Hartley: Quantification of Line Rate -- 2.1.1.4 Shannon: Channel Capacity -- 2.1.2 Welcome to the Frequency Domain -- 2.1.2.1 Fourier Transform -- 2.1.2.2 Fourier Series -- 2.1.2.3 Power Spectral Density and Bandwidth -- 2.1.3 From Analog to Digital: Sampling and Quantization -- 2.1.3.1 Sampling -- 2.1.3.2 Quantization -- 2.2 Digital Modulation -- 2.2.1 Modulation Fundamentals -- 2.2.2 Baseband Signaling -- 2.2.3 Passband Signaling -- 2.2.3.1 Modulation, Complex Envelope, and Signal Constellations -- 2.2.3.2 Demodulation and Eye Diagrams.
2.2.4 Simple Modulations: ASK, PSK, and FSK -- 2.2.4.1 Amplitude-Shift Keying -- 2.2.4.2 Phase-Shift Keying -- 2.2.4.3 Frequency-Shift Keying -- 2.2.5 Complex Modulations: QAM and APSK -- 2.2.5.1 Quadrature Amplitude Modulation -- 2.2.5.2 Amplitude and Phase-Shift Keying -- 2.3 Performance of Telecommunication Systems -- 2.3.1 General Framework and Components -- 2.3.1.1 TX-Side DSP -- 2.3.1.2 Digital-to-Analog Converter -- 2.3.1.3 TX RF Front-End -- 2.3.1.4 Channel -- 2.3.1.5 RX RF Front-End -- 2.3.1.6 Analog-to-Digital Converter -- 2.3.1.7 RX-Side DSP -- 2.3.1.8 Evaluating Performance -- 2.3.2 Noise -- 2.3.2.1 Origin and Properties of Noise -- 2.3.2.2 Additive White Gaussian Noise -- 2.3.2.3 Phase Noise -- 2.3.2.4 BER for Baseband Signaling -- 2.3.2.5 BER for Passband Signaling -- 2.3.2.6 SNR and EVM -- 2.3.2.7 Noise Figure -- 2.3.2.8 Matched Filtering -- 2.3.2.9 Forward Error Correction -- 2.3.3 Nonlinearity -- 2.3.3.1 Harmonic Distortion -- 2.3.3.2 Gain Compression -- 2.3.3.3 Intermodulation Distortion -- 2.3.3.4 Phase Distortion -- 2.3.3.5 Linearity Requirements for Passband Modulations -- 2.3.3.6 Predistortion -- 2.3.4 Bandlimiting Filtering -- 2.3.4.1 Types of Filtering -- 2.3.4.2 BW, ISI, and Power Penalty -- 2.3.4.3 Pulse Shaping -- 2.3.4.4 Equalization -- 2.3.5 Propagation and Link Budget -- 2.3.5.1 Wireless Propagation -- 2.3.5.2 Guided DWG Propagation -- 2.3.5.3 Link Budget -- 2.3.6 Performance Comparison of Modulation Techniques -- 2.4 Conclusion -- 3 Basic Electronics and Components -- 3.1 Electromagnetism and Circuit Theory -- 3.1.1 Maxwell and Electromagnetic Waves -- 3.1.1.1 Maxwell's Equations -- 3.1.1.2 Electromagnetic Wave Propagation -- 3.1.1.3 Basic Properties of TEM Waves -- 3.1.1.4 Power Flow and Poynting Vector -- 3.1.1.5 Planar Waves in a Lossy Medium -- 3.1.2 Electromagnetic Waves in Dielectric Waveguides.
3.1.2.1 Propagation Principles -- 3.1.2.2 Attenuation -- 3.1.2.3 Dispersion -- 3.1.3 Basic Circuit Theory -- 3.1.3.1 Voltage and Current -- 3.1.3.2 Resistor -- 3.1.3.3 Inductor -- 3.1.3.4 Capacitor -- 3.1.3.5 Rules of Circuit Theory -- 3.1.4 Transmission Line Theory -- 3.1.4.1 Lumped-Element Model of a Transmission Line -- 3.1.4.2 Field Interpretation of a Transmission Line -- 3.1.4.3 Behavior of Transmission Lines -- 3.2 Active Components -- 3.2.1 MOSFETs in CMOS -- 3.2.2 Basic MOSFET Characteristics -- 3.2.2.1 Regions of Operation -- 3.2.2.2 MOSFET as a Transconductance -- 3.2.2.3 MOSFET as a Switch -- 3.2.3 MOSFETs at High Frequencies -- 3.2.3.1 Transistor Gain: fT and fmax -- 3.2.3.2 Transistor Noise: Fmin -- 3.2.4 Transistor Optimization -- 3.2.4.1 Gate Resistance Optimization -- 3.2.4.2 Layout Optimization and Modeling -- 3.2.5 Effects of Scaling -- 3.3 Passive Components -- 3.3.1 Metal Stack and Effects of Scaling -- 3.3.2 Inductors -- 3.3.2.1 Inductor Model -- 3.3.2.2 Implementation -- 3.3.3 Transformers -- 3.3.3.1 Transformer Model -- 3.3.3.2 Implementation -- 3.3.4 Capacitors -- 3.3.4.1 Capacitor Model -- 3.3.4.2 Implementation -- 3.3.5 Transmission Lines -- 3.3.5.1 Transmission Line Model -- 3.3.5.2 Implementation -- 3.4 Conclusion -- 4 High-Frequency Circuit Design -- 4.1 Matching Fundamentals -- 4.1.1 S-Parameters -- 4.1.2 Types of Matching -- 4.1.2.1 Conjugate Matching -- 4.1.2.2 Large-Signal Power Matching -- 4.1.2.3 Noise Matching -- 4.1.3 Matching Networks and Bode-Fano Limit -- 4.1.4 RLC Resonators -- 4.1.4.1 RC Low-Pass Circuit -- 4.1.4.2 Parallel RLC Circuit -- 4.1.4.3 Series RLC Circuit -- 4.1.4.4 Parallel-Series Transformation -- 4.1.5 The Many Faces of Q -- 4.1.5.1 Untuned Component -- 4.1.5.2 Tuned Network -- 4.1.6 Matching Network Implementations -- 4.1.6.1 Lumped-Element Matching -- 4.1.6.2 Distributed Matching.
4.2 Stability -- 4.2.1 Two-Port Verification Criteria -- 4.2.2 Open-Loop Stability Verification -- 4.2.3 Closed-Loop Stability Verification -- 4.3 Neutralized Pseudo-Differential Pair -- 4.3.1 Performance Metrics for Amplifiers -- 4.3.2 Differential vs. Single-Ended Design -- 4.3.3 Capacitive Neutralization -- 4.3.4 Amplifier Topologies -- 4.3.5 Implementation of an NPDP -- 4.3.6 Design of an NPDP -- 4.3.6.1 Transistor Size -- 4.3.6.2 Biasing -- 4.4 Transformer-Based Matching Networks -- 4.4.1 Why Transformer-Based Matching? -- 4.4.2 Frequency Response of a Transformer-Based Network -- 4.4.3 Realistic Transformer Networks -- 4.4.4 Practical Matching Methodology -- 4.4.5 Transformer Implementation -- 4.4.6 Broadband Multistage Amplifier Design -- 4.5 Overview of Amplifier-Based Circuit Blocks -- 4.5.1 Designing for Gain: Small-Signal Amplifiers -- 4.5.2 Designing for Power: Power Amplifiers -- 4.5.3 Designing for Noise: Low-Noise Amplifiers -- 4.5.4 Designing for Nonlinearity: Frequency Multipliers -- 4.5.5 Non-amplifier-Based Circuit Blocks -- 4.6 Conclusion -- 5 System-Level Considerations -- 5.1 Qualitative Discussion on Link Capacity and Efficiency -- 5.1.1 SNR and Modulation Scheme -- 5.1.2 Bandwidth and Carrier Frequency -- 5.1.3 Number of Channels and Multiplexing -- 5.1.4 System-Level Design -- 5.1.5 A Note on Architectures -- 5.1.6 Let Us Get Numerical! -- 5.2 Shannon's Link Capacity over Frequency -- 5.2.1 General Link Model -- 5.2.2 Performance over Frequency -- 5.2.2.1 Transmitter Output Power -- 5.2.2.2 Receiver Noise Figure -- 5.2.2.3 System Bandwidth -- 5.2.2.4 Antenna Gain -- 5.2.3 Evaluating Shannon's Capacity -- 5.3 Modulation-Specific Link Capacity -- 5.3.1 Calculating Mutual Information -- 5.3.2 Evaluating Modulation-Specific Capacities -- 5.4 Adding System Impairments -- 5.4.1 PA Nonlinearity -- 5.4.2 LO Phase Noise.
5.4.3 DAC/ADC Aperture Jitter -- 5.4.4 Inter-symbol Interference -- 5.4.4.1 1st Order Filter -- 5.4.4.2 Multistage Filter -- 5.4.4.3 Power Penalty for Multilevel Signaling -- 5.4.5 Other Transceiver Impairments -- 5.4.6 Evaluating Impaired Link Capacities -- 5.5 Extending the Range of Single-Cell Wireless Systems -- 5.5.1 Phased-Array Wireless Links -- 5.5.1.1 Benefits and Challenges of Phased Arrays -- 5.5.1.2 Evaluating Phased-Array Link Capacities -- 5.5.2 Dielectric Waveguide Links -- 5.5.2.1 DWG Characteristics -- 5.5.2.2 Dispersion Modeling -- 5.5.2.3 Evaluating DWG Link Capacities -- 5.6 Modeling Power Consumption and Energy Efficiency -- 5.6.1 RF Font-End -- 5.6.1.1 Power Amplifier -- 5.6.1.2 Low-Noise Amplifier -- 5.6.1.3 Mixer -- 5.6.2 LO Generation -- 5.6.2.1 Voltage-Controlled Oscillator -- 5.6.2.2 LO Buffers -- 5.6.3 Data Converters -- 5.6.3.1 DACs and ADCs -- 5.6.3.2 Clock Generation -- 5.6.3.3 Baseband Amplifiers -- 5.6.4 Energy Efficiency -- 5.6.4.1 Modeling Methodology -- 5.6.4.2 Link Efficiency Example -- 5.7 Efficiency Case Studies -- 5.7.1 Case Study 1: 25Gb/s Wireless Link vs. Distance -- 5.7.2 Case Study 2: 1m Wireless Link vs. Data Rate -- 5.7.3 Case Study 3: 25Gb/s DWG Link vs. Distance -- 5.7.4 Case Study 4: 5m DWG Link vs. Data Rate -- 5.8 Conclusion -- 6 A High-Speed 390GHz BPOOK Transmitter -- 6.1 Overview of THz Transmitter Architectures -- 6.1.1 Below-fmax Transmitters -- 6.1.2 Above-fmax Transmitters -- 6.1.2.1 Mixer-Last Transmitter -- 6.1.2.2 Multiplier-Last Transmitter -- 6.1.2.3 Multiplying Mixer-Last Transmitter -- 6.1.2.4 Harmonic VCO-Based Transmitter -- 6.1.3 Chosen THz Transmitter Architecture -- 6.2 Binary-Phase On-Off Keying -- 6.2.1 Modulation Considerations for THz Systems -- 6.2.2 BPOOK and Duobinary Encoding -- 6.2.3 BPOOK Encoding and Decoding Techniques -- 6.3 Transmitter Circuit Design.
6.3.1 Transmitter Architecture Overview.
Titolo autorizzato: THz and Sub-THz CMOS Electronics for High-Speed Telecommunication  Visualizza cluster
ISBN: 3-031-64439-5
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910878991203321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Analog Circuits and Signal Processing Series