Vai al contenuto principale della pagina

Using data science to understand the coronavirus pandemic / / guest editors Xin Tian, Wu He and Yunfei Xing



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Using data science to understand the coronavirus pandemic / / guest editors Xin Tian, Wu He and Yunfei Xing Visualizza cluster
Pubblicazione: [Place of publication not identified] : , : Emerald Publishing Limited, , 2021
Descrizione fisica: 1 online resource (81 pages)
Disciplina: 614.592414
Soggetto topico: COVID-19 Pandemic, 2020- - Geographic information systems
Persona (resp. second.): TianXin
HeWu
XingYunfei
Nota di contenuto: Cover -- Guest editorial -- Twitter users' coping behaviors during the COVID-19 lockdown: an analysis of tweets using mixed methods -- A comparative study of modified SIR and logistic predictors using local level database of COVID-19 in India -- An agent-based model for simulating COVID-19 transmissions on university campus and its implications on mitigation interventions: a case study -- An empirical investigation of precursors influencing social media health information behaviors and personal healthcare habits during coronavirus (COVID-19) pandemic -- An analysis of attitude of general public toward COVID-19 crises - sentimental analysis and a topic modeling study -- COVID-19 and India: what next? -- Forecasting mental health and emotions based on social media expressions during the COVID-19 pandemic.
Titolo autorizzato: Using data science to understand the coronavirus pandemic  Visualizza cluster
ISBN: 1-80262-836-3
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910795354403321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Information Discovery and Delivery