LEADER 02170nam 2200409 450 001 9910795354403321 005 20231110221437.0 010 $a1-80262-836-3 035 $a(CKB)4950000000283502 035 $a(MiAaPQ)EBC6787965 035 $a(Au-PeEL)EBL6787965 035 $a(EXLCZ)994950000000283502 100 $a20220712d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aUsing data science to understand the coronavirus pandemic /$fguest editors Xin Tian, Wu He and Yunfei Xing 210 1$a[Place of publication not identified] :$cEmerald Publishing Limited,$d2021. 215 $a1 online resource (81 pages) 225 0 $aInformation Discovery and Delivery,$x2398-6247 ;$vVolume 49, Number 3 327 $aCover -- Guest editorial -- Twitter users' coping behaviors during the COVID-19 lockdown: an analysis of tweets using mixed methods -- A comparative study of modified SIR and logistic predictors using local level database of COVID-19 in India -- An agent-based model for simulating COVID-19 transmissions on university campus and its implications on mitigation interventions: a case study -- An empirical investigation of precursors influencing social media health information behaviors and personal healthcare habits during coronavirus (COVID-19) pandemic -- An analysis of attitude of general public toward COVID-19 crises - sentimental analysis and a topic modeling study -- COVID-19 and India: what next? -- Forecasting mental health and emotions based on social media expressions during the COVID-19 pandemic. 410 0$aInformation Discovery and Delivery 606 $aCOVID-19 Pandemic, 2020-$xGeographic information systems 615 0$aCOVID-19 Pandemic, 2020-$xGeographic information systems. 676 $a614.592414 702 $aTian$b Xin 702 $aHe$b Wu 702 $aXing$b Yunfei 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910795354403321 996 $aUsing data science to understand the coronavirus pandemic$93707981 997 $aUNINA