Vai al contenuto principale della pagina
Autore: | Wehrung Friedrich |
Titolo: | Refinement Monoids, Equidecomposability Types, and Boolean Inverse Semigroups / / by Friedrich Wehrung |
Pubblicazione: | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
Edizione: | 1st ed. 2017. |
Descrizione fisica: | 1 online resource (VII, 242 p. 5 illus.) |
Disciplina: | 512.2 |
Soggetto topico: | Group theory |
Associative rings | |
Rings (Algebra) | |
Algebra | |
Ordered algebraic structures | |
K-theory | |
Measure theory | |
Group Theory and Generalizations | |
Associative Rings and Algebras | |
Order, Lattices, Ordered Algebraic Structures | |
General Algebraic Systems | |
K-Theory | |
Measure and Integration | |
Nota di contenuto: | Chapter 1. Background -- Chapter 2. Partial commutative monoids. - Chapter 3. Boolean inverse semigroups and additive semigroup homorphisms -- Chapter 4. Type monoids and V-measures. - Chapter 5. Type theory of special classes of Boolean inverse semigroups. - Chapter 6. Constructions involving involutary semirings and rings. - Chapter 7. discussion. - Bibliography -- Author Index. - Glossary -- Index. |
Sommario/riassunto: | Adopting a new universal algebraic approach, this book explores and consolidates the link between Tarski's classical theory of equidecomposability types monoids, abstract measure theory (in the spirit of Hans Dobbertin's work on monoid-valued measures on Boolean algebras) and the nonstable K-theory of rings. This is done via the study of a monoid invariant, defined on Boolean inverse semigroups, called the type monoid. The new techniques contrast with the currently available topological approaches. Many positive results, but also many counterexamples, are provided. |
Titolo autorizzato: | Refinement monoids, equidecomposability types, and Boolean inverse semigroups |
ISBN: | 3-319-61599-8 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910257379803321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |