Vai al contenuto principale della pagina

Refinement Monoids, Equidecomposability Types, and Boolean Inverse Semigroups / / by Friedrich Wehrung



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Wehrung Friedrich Visualizza persona
Titolo: Refinement Monoids, Equidecomposability Types, and Boolean Inverse Semigroups / / by Friedrich Wehrung Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Edizione: 1st ed. 2017.
Descrizione fisica: 1 online resource (VII, 242 p. 5 illus.)
Disciplina: 512.2
Soggetto topico: Group theory
Associative rings
Rings (Algebra)
Algebra
Ordered algebraic structures
K-theory
Measure theory
Group Theory and Generalizations
Associative Rings and Algebras
Order, Lattices, Ordered Algebraic Structures
General Algebraic Systems
K-Theory
Measure and Integration
Nota di contenuto: Chapter 1. Background --  Chapter 2. Partial commutative monoids. -  Chapter 3. Boolean inverse semigroups and additive semigroup homorphisms --  Chapter 4. Type monoids and V-measures. -  Chapter 5. Type theory of special classes of Boolean inverse semigroups. -  Chapter 6. Constructions involving involutary semirings and rings. - Chapter 7. discussion. - Bibliography --  Author Index. - Glossary -- Index.
Sommario/riassunto: Adopting a new universal algebraic approach, this book explores and consolidates the link between Tarski's classical theory of equidecomposability types monoids, abstract measure theory (in the spirit of Hans Dobbertin's work on monoid-valued measures on Boolean algebras) and the nonstable K-theory of rings. This is done via the study of a monoid invariant, defined on Boolean inverse semigroups, called the type monoid. The new techniques contrast with the currently available topological approaches. Many positive results, but also many counterexamples, are provided.
Titolo autorizzato: Refinement monoids, equidecomposability types, and Boolean inverse semigroups  Visualizza cluster
ISBN: 3-319-61599-8
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910257379803321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Mathematics, . 0075-8434 ; ; 2188