LEADER 03916nam 22007695 450 001 9910257379803321 005 20200630231003.0 010 $a3-319-61599-8 024 7 $a10.1007/978-3-319-61599-8 035 $a(CKB)4100000000587415 035 $a(DE-He213)978-3-319-61599-8 035 $a(MiAaPQ)EBC6300789 035 $a(MiAaPQ)EBC5595557 035 $a(Au-PeEL)EBL5595557 035 $a(OCoLC)1003860146 035 $a(PPN)204533252 035 $a(EXLCZ)994100000000587415 100 $a20170909d2017 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aRefinement Monoids, Equidecomposability Types, and Boolean Inverse Semigroups /$fby Friedrich Wehrung 205 $a1st ed. 2017. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2017. 215 $a1 online resource (VII, 242 p. 5 illus.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v2188 311 $a3-319-61598-X 327 $aChapter 1. Background --  Chapter 2. Partial commutative monoids. -  Chapter 3. Boolean inverse semigroups and additive semigroup homorphisms --  Chapter 4. Type monoids and V-measures. -  Chapter 5. Type theory of special classes of Boolean inverse semigroups. -  Chapter 6. Constructions involving involutary semirings and rings. - Chapter 7. discussion. - Bibliography --  Author Index. - Glossary -- Index. 330 $aAdopting a new universal algebraic approach, this book explores and consolidates the link between Tarski's classical theory of equidecomposability types monoids, abstract measure theory (in the spirit of Hans Dobbertin's work on monoid-valued measures on Boolean algebras) and the nonstable K-theory of rings. This is done via the study of a monoid invariant, defined on Boolean inverse semigroups, called the type monoid. The new techniques contrast with the currently available topological approaches. Many positive results, but also many counterexamples, are provided. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v2188 606 $aGroup theory 606 $aAssociative rings 606 $aRings (Algebra) 606 $aAlgebra 606 $aOrdered algebraic structures 606 $aK-theory 606 $aMeasure theory 606 $aGroup Theory and Generalizations$3https://scigraph.springernature.com/ontologies/product-market-codes/M11078 606 $aAssociative Rings and Algebras$3https://scigraph.springernature.com/ontologies/product-market-codes/M11027 606 $aOrder, Lattices, Ordered Algebraic Structures$3https://scigraph.springernature.com/ontologies/product-market-codes/M11124 606 $aGeneral Algebraic Systems$3https://scigraph.springernature.com/ontologies/product-market-codes/M1106X 606 $aK-Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M11086 606 $aMeasure and Integration$3https://scigraph.springernature.com/ontologies/product-market-codes/M12120 615 0$aGroup theory. 615 0$aAssociative rings. 615 0$aRings (Algebra). 615 0$aAlgebra. 615 0$aOrdered algebraic structures. 615 0$aK-theory. 615 0$aMeasure theory. 615 14$aGroup Theory and Generalizations. 615 24$aAssociative Rings and Algebras. 615 24$aOrder, Lattices, Ordered Algebraic Structures. 615 24$aGeneral Algebraic Systems. 615 24$aK-Theory. 615 24$aMeasure and Integration. 676 $a512.2 700 $aWehrung$b Friedrich$4aut$4http://id.loc.gov/vocabulary/relators/aut$0512591 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910257379803321 996 $aRefinement monoids, equidecomposability types, and Boolean inverse semigroups$91466433 997 $aUNINA