Vai al contenuto principale della pagina

Fermi Surface and Quantum Critical Phenomena of High-Temperature Superconductors / / by Carsten Matthias Putzke



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Putzke Carsten Matthias Visualizza persona
Titolo: Fermi Surface and Quantum Critical Phenomena of High-Temperature Superconductors / / by Carsten Matthias Putzke Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Edizione: 1st ed. 2017.
Descrizione fisica: 1 online resource (XV, 162 p. 104 illus., 23 illus. in color.)
Disciplina: 537.6231
Soggetto topico: Superconductivity
Superconductors
Quantum physics
Optical materials
Electronic materials
Strongly Correlated Systems, Superconductivity
Quantum Physics
Optical and Electronic Materials
Nota di bibliografia: Includes bibliographical references.
Nota di contenuto: Introduction to Iron Based Superconductors -- Theory -- Experimental Setup -- BaFe2(As1-xPx)2-A Quantum Critical Superconductor -- LiFeAs and LiFeP-Stoichiometric Superconductors -- YBa2Cu408 -- Numerical Phase Sensitive Detection in Matlab -- Publications -- Bibliography.
Sommario/riassunto: This thesis provides a detailed introduction to quantum oscillation measurement and analysis and offers a connection between Fermi surface properties and superconductivity in high-temperature superconductors. It also discusses the field of iron-based superconductors and tests the models for the appearance of nodes in the superconducting gap of a 111-type pnictide using quantum oscillation measurements combined with band structure calculation. The same measurements were carried out to determine the quasiparticle mass in BaFe2(As1-xPx)2, which is strongly enhanced at the expected quantum critical point. While the lower superconducting critical field shows evidence of quantum criticality, the upper superconducting critical field is not influenced by the quantum critical point. These findings contradict conventional theories, demonstrating the need for a theoretical treatment of quantum critical superconductors, which has not been addressed to date. The quest to discover similar evidence in the cuprates calls for the application of extreme conditions. As such, quantum oscillation measurements were performed under high pressure in a high magnetic field, revealing a negative correlation between quasiparticle mass and superconducting critical temperature.
Titolo autorizzato: Fermi Surface and Quantum Critical Phenomena of High-Temperature Superconductors  Visualizza cluster
ISBN: 3-319-48646-2
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910151856103321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Springer Theses, Recognizing Outstanding Ph.D. Research, . 2190-5053