03924nam 22006255 450 991015185610332120200702092315.03-319-48646-210.1007/978-3-319-48646-8(CKB)3710000000952917(DE-He213)978-3-319-48646-8(MiAaPQ)EBC4744618(PPN)197138659(EXLCZ)99371000000095291720161116d2017 u| 0engurnn|008mamaatxtrdacontentcrdamediacrrdacarrierFermi Surface and Quantum Critical Phenomena of High-Temperature Superconductors /by Carsten Matthias Putzke1st ed. 2017.Cham :Springer International Publishing :Imprint: Springer,2017.1 online resource (XV, 162 p. 104 illus., 23 illus. in color.) Springer Theses, Recognizing Outstanding Ph.D. Research,2190-50533-319-48645-4 Includes bibliographical references.Introduction to Iron Based Superconductors -- Theory -- Experimental Setup -- BaFe2(As1-xPx)2-A Quantum Critical Superconductor -- LiFeAs and LiFeP-Stoichiometric Superconductors -- YBa2Cu408 -- Numerical Phase Sensitive Detection in Matlab -- Publications -- Bibliography.This thesis provides a detailed introduction to quantum oscillation measurement and analysis and offers a connection between Fermi surface properties and superconductivity in high-temperature superconductors. It also discusses the field of iron-based superconductors and tests the models for the appearance of nodes in the superconducting gap of a 111-type pnictide using quantum oscillation measurements combined with band structure calculation. The same measurements were carried out to determine the quasiparticle mass in BaFe2(As1-xPx)2, which is strongly enhanced at the expected quantum critical point. While the lower superconducting critical field shows evidence of quantum criticality, the upper superconducting critical field is not influenced by the quantum critical point. These findings contradict conventional theories, demonstrating the need for a theoretical treatment of quantum critical superconductors, which has not been addressed to date. The quest to discover similar evidence in the cuprates calls for the application of extreme conditions. As such, quantum oscillation measurements were performed under high pressure in a high magnetic field, revealing a negative correlation between quasiparticle mass and superconducting critical temperature.Springer Theses, Recognizing Outstanding Ph.D. Research,2190-5053SuperconductivitySuperconductorsQuantum theoryOptical materialsElectronicsMaterialsStrongly Correlated Systems, Superconductivityhttps://scigraph.springernature.com/ontologies/product-market-codes/P25064Quantum Physicshttps://scigraph.springernature.com/ontologies/product-market-codes/P19080Optical and Electronic Materialshttps://scigraph.springernature.com/ontologies/product-market-codes/Z12000Superconductivity.Superconductors.Quantum theory.Optical materials.ElectronicsMaterials.Strongly Correlated Systems, Superconductivity.Quantum Physics.Optical and Electronic Materials.537.6231Putzke Carsten Matthiasauthttp://id.loc.gov/vocabulary/relators/aut993710MiAaPQMiAaPQMiAaPQBOOK9910151856103321Fermi Surface and Quantum Critical Phenomena of High-Temperature Superconductors2275359UNINA