Vai al contenuto principale della pagina
| Titolo: |
2007 IEEE 11th International Conference on Computer Vision
|
| Pubblicazione: | [Place of publication not identified], : IEEE, 2007 |
| Descrizione fisica: | 1 online resource |
| Disciplina: | 006.37 |
| Soggetto topico: | Computer vision |
| Persona (resp. second.): | IEEE Staff |
| Note generali: | Bibliographic Level Mode of Issuance: Monograph |
| Sommario/riassunto: | We propose a simple probabilistic generative model for image segmentation. Like other probabilistic algorithms (such as EM on a Mixture of Gaussians) the proposed model is principled, provides both hard and probabilistic cluster assignments, as well as the ability to naturally incorporate prior knowledge. While previous probabilistic approaches are restricted to parametric models of clusters (e.g., Gaussians) we eliminate this limitation. The suggested approach does not make heavy assumptions on the shape of the clusters and can thus handle complex structures. Our experiments show that the suggested approach outperforms previous work on a variety of image segmentation tasks. |
| Titolo autorizzato: | 2007 IEEE 11th International Conference on Computer Vision ![]() |
| ISBN: | 9781509088331 |
| 1509088334 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910146693803321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |