1.

Record Nr.

UNINA9910302187503321

Titolo

Cahiers de la presse (Paris)

Pubbl/distr/stampa

Libraire du Recueil Sirey

ISSN

2546-9916

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Periodico

2.

Record Nr.

UNINA9910146693803321

Titolo

2007 IEEE 11th International Conference on Computer Vision

Pubbl/distr/stampa

[Place of publication not identified], : IEEE, 2007

ISBN

9781509088331

1509088334

Descrizione fisica

1 online resource

Disciplina

006.37

Soggetti

Computer vision

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Sommario/riassunto

We propose a simple probabilistic generative model for image segmentation. Like other probabilistic algorithms (such as EM on a Mixture of Gaussians) the proposed model is principled, provides both hard and probabilistic cluster assignments, as well as the ability to naturally incorporate prior knowledge. While previous probabilistic approaches are restricted to parametric models of clusters (e.g., Gaussians) we eliminate this limitation. The suggested approach does not make heavy assumptions on the shape of the clusters and can thus handle complex structures. Our experiments show that the suggested approach outperforms previous work on a variety of image



segmentation tasks.