Vai al contenuto principale della pagina

Material characterization using electron holography / / Daisuke Shindo, Takeshi Tomita



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Shindō D (Daisuke), <1953-> Visualizza persona
Titolo: Material characterization using electron holography / / Daisuke Shindo, Takeshi Tomita Visualizza cluster
Pubblicazione: Weinheim, Germany : , : Wiley-VCH, , [2023]
©2023
Descrizione fisica: 1 online resource (242 pages) : illustrations
Disciplina: 502.825
Soggetto topico: Electron holography
Materials - Electric properties
Transmission electron microscopy
Persona (resp. second.): TomitaTakeshi
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Cover -- Title Page -- Copyright -- Contents -- Preface -- List of Specimens -- Part I Introduction -- Chapter 1 Importance of Electromagnetic Field and Its Visualization -- Chapter 2 Maxwell's Equations and Special Relativity -- 2.1 Maxwell's Equations and Electromagnetic Potentials -- 2.2 Maxwell's Equations Formulated Using Special Relativity -- References -- Chapter 3 Basis of Transmission Electron Microscopy -- Part II Principles and Practice -- Chapter 4 Principles of Electron Holography -- 4.1 Types of Electron Holography -- 4.2 Outline of Electron Holography -- 4.3 Comparison of Phase Shifts Due to Scalar and Vector Potentials -- 4.3.1 Phase Shift Due to Scalar Potential -- 4.3.2 Phase Shift Due to Vector Potential -- 4.3.3 Effect of Thickness Change on Phase Shifts Due to Scalar and Vector Potentials -- 4.3.4 Electric Information -- 4.4 Analysis of Reconstructed Phase Images by Computer Simulation -- References -- Chapter 5 Microscope Constitution and Hologram Formation -- 5.1 Basic Constitution of Transmission Electron Microscope -- 5.1.1 Electron Gun System -- 5.1.2 Illumination System -- 5.1.3 Imaging System -- 5.1.3.1 Focal Length -- 5.1.3.2 Spherical Aberration Coefficient -- 5.1.3.3 Chromatic Aberration Coefficient -- 5.1.3.4 Minimum Step of Defocus -- 5.1.4 Observation System -- 5.1.4.1 Television Camera -- 5.1.4.2 Slow‐Scan Charge‐Coupled Device Camera -- 5.1.5 Operation of Transmission Electron Microscope -- 5.1.5.1 Adjustment of Electron Gun -- 5.1.5.2 Alignment and Astigmatism Correction of Condenser Lenses -- 5.1.5.3 Alignment of Voltage Center and Correction of Objective Lens Astigmatism -- 5.1.5.4 Correction of Intermediate Lens Astigmatism -- 5.1.5.5 Alignment of Projector Lens -- 5.1.5.6 Adjustment of Objective Lens Focus -- 5.2 Biprism System -- 5.3 Coherence Lengths -- 5.4 Formation of Interference Fringes.
5.4.1 Geometrical‐Path Interpretation with Two Virtual Sources -- 5.4.2 Wave‐Optical Treatment -- 5.4.2.1 Wave Function at Wire Plane -- 5.4.2.2 Green's Integral Theorem -- 5.4.2.3 Explicit Form of Green's Function -- 5.4.2.4 Intensity Distribution of Interference Fringes -- 5.4.2.5 Stationary Points and Interference Region -- 5.4.2.6 Spacing of Interference Fringes -- 5.5 Simulation of Interference Fringes -- References -- Chapter 6 Related Techniques and Specialized Instrumentation -- 6.1 Split‐Illumination Electron Holography -- 6.2 Dark‐Field Electron Holographic Interferometry -- 6.3 Lorentz Microscopy -- 6.3.1 Fresnel Mode (Defocusing Mode) -- 6.3.2 Foucault Mode (In‐Focus Mode) -- 6.3.3 Lorentz Microscopy Using Scanning Transmission Electron Microscope -- 6.3.4 Phase Reconstruction Using Transport‐of‐Intensity Equation -- 6.4 Magnetically Shielded Lens and High‐Voltage Electron Microscope -- 6.5 Aberration‐Corrected Lens System -- 6.6 Multifunctional Specimen Holders with Piezodriving Probes -- 6.7 Specimen Preparation Techniques -- 6.8 High‐Resolution and Analytical Electron Microscopy -- 6.8.1 Conventional Microscopy and High‐Resolution Electron Microscopy -- 6.8.2 High‐Angle Annular Dark‐Field Method -- 6.8.3 Analytical Electron Microscopy -- References -- Part III Application -- Chapter 7 Electric Field Analysis -- 7.1 Measurement of Inner Potential -- 7.1.1 Diamond‐Like Carbon -- 7.1.2 SiO2 Particles -- 7.1.3 p-n Junctions and Low‐Dimensional Materials -- 7.2 Electric Field Analysis of Precipitates in Multilayer Ceramic Capacitor -- 7.3 Analysis of Spontaneous Polarization in Oxide Heterojunctions -- 7.4 Evaluation of Electric Charge with Laser Irradiation -- 7.5 Analysis of Conductivity with Microstructure Changes -- 7.6 Detection of Electric Field Variation Around Field Emitter -- References -- Chapter 8 Magnetic Field Analysis.
8.1 Quantitative Analysis of Magnetic Flux Distribution of Nanoparticles -- 8.2 Observation of Magnetization Processes -- 8.2.1 Soft Magnetic Materials -- 8.2.2 Hard Magnetic Materials -- 8.2.3 Magnetic Recording Materials -- 8.2.4 Ferromagnetic Shape‐Memory Materials -- 8.3 Observation of Magnetic Structure Change with Temperature -- 8.4 Analysis of Three‐Dimensional Magnetic Structures -- References -- Part IV Visualization of Collective Motions of Electrons and Their Interpretation -- Chapter 9 Charging Effects and Secondary Electron Distribution of Biological Specimens -- 9.1 Visualization of Stationary Electron Orbits -- 9.1.1 Stationary Electron Orbits Observed Around Microfibrils -- 9.1.2 Simulation of Electron Orbits Around Microfibril -- 9.1.3 Interpretation of Reconstructed Amplitude Image -- 9.1.4 Simulation of Visibility of Interference Fringes for Electron Motion -- 9.1.5 Change in Electron Orbits Due to Insertion of Electrode -- 9.2 Visualization of Accumulative and Collective Motions of Electrons -- References -- Chapter 10 Collective Motions of Electrons Around Various Charged Insulators -- 10.1 Accumulation of Electrons on Cleaved Surfaces of BaTiO3 -- 10.2 Dependency of Electron Distribution on Surface Condition of Epoxy Resin and Kidney -- 10.3 Electron Distribution Between Epoxy Resin and Kidney -- 10.4 Control of Electron Distribution Around Cellulose Nanofibers by Applying External Electric Field -- References -- Chapter 11 Extension of Analysis of Collective Motions of Electrons -- 11.1 Electron Spin Polarization -- 11.2 Accumulation of Electrons on Bulk Insulator Surface -- References -- Chapter 12 Theoretical Consideration on Visualizing Collective Motions of Electrons -- 12.1 De Broglie's Matter Wave and Wave Function -- 12.2 Disturbance‐Free Observation -- 12.3 Electron Interference and General Relativity.
12.3.1 Einstein's Field Equations Based on General Relativity -- 12.3.2 Infeld and Schild's Approximate Solution to Einstein's Field Equations -- 12.4 Spinning Linear Wave Model -- 12.5 Electron Interference Formulated with Spinning Linear Wave -- 12.5.1 Interpretation of Diffraction Intensity -- 12.5.2 Interpretation of Interference Fringes -- 12.5.3 Simulation of Interference Fringes -- 12.6 Interpretation of Wave-Particle Dualism -- References -- A Physical Constants, Conversion Factors, and Electron Wavelength -- Index -- EULA.
Titolo autorizzato: Material characterization using electron holography  Visualizza cluster
ISBN: 9783527829712
3-527-82971-7
3-527-82969-5
9783527829705
3-527-82970-9
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910831182803321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui