LEADER 00932nam0-2200301---450- 001 990009214210403321 005 20100825144858.0 035 $a000921421 035 $aFED01000921421 035 $a(Aleph)000921421FED01 035 $a000921421 100 $a20100825d1972----km-y0itay50------ba 101 0 $afre 102 $aFR 105 $aa---j---001yy 200 1 $aPrecis d' incubation, d' elevage et de pathologie du dindon$fJ. Nicolas$gpreface du professeur R. Ferrando 210 $aParis$cMaloine S. A.$d1972 215 $a237 p., VI p. di tav.$cill.$d24 cm 610 0 $aTacchini$aAllevamento 610 0 $aTacchini$aMalattie 700 1$aNicolas,$bJacques$f<1869- >$0434506 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990009214210403321 952 $a636.5-69$b6815$fDMVBF 959 $aDMVBF 996 $aPrecis d' incubation, d' elevage et de pathologie du dindon$9777176 997 $aUNINA LEADER 07921nam 2200541 450 001 9910831182803321 005 20230114061410.0 010 $a9783527829712$belectronic book 010 $a3-527-82971-7 010 $a3-527-82969-5 010 $a9783527829705$bePub ebook 010 $a3-527-82970-9 035 $a(MiAaPQ)EBC7078221 035 $a(Au-PeEL)EBL7078221 035 $a(CKB)24750553100041 035 $a(EXLCZ)9924750553100041 100 $a20230114d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMaterial characterization using electron holography /$fDaisuke Shindo, Takeshi Tomita 210 1$aWeinheim, Germany :$cWiley-VCH,$d[2023] 210 4$dİ2023 215 $a1 online resource (242 pages) $cillustrations 311 08$aPrint version: Tomita, Takeshi Material Characterization Using Electron Holography Newark : John Wiley & Sons, Incorporated,c2022 9783527348046 320 $aIncludes bibliographical references and index. 327 $aCover -- Title Page -- Copyright -- Contents -- Preface -- List of Specimens -- Part I Introduction -- Chapter 1 Importance of Electromagnetic Field and Its Visualization -- Chapter 2 Maxwell's Equations and Special Relativity -- 2.1 Maxwell's Equations and Electromagnetic Potentials -- 2.2 Maxwell's Equations Formulated Using Special Relativity -- References -- Chapter 3 Basis of Transmission Electron Microscopy -- Part II Principles and Practice -- Chapter 4 Principles of Electron Holography -- 4.1 Types of Electron Holography -- 4.2 Outline of Electron Holography -- 4.3 Comparison of Phase Shifts Due to Scalar and Vector Potentials -- 4.3.1 Phase Shift Due to Scalar Potential -- 4.3.2 Phase Shift Due to Vector Potential -- 4.3.3 Effect of Thickness Change on Phase Shifts Due to Scalar and Vector Potentials -- 4.3.4 Electric Information -- 4.4 Analysis of Reconstructed Phase Images by Computer Simulation -- References -- Chapter 5 Microscope Constitution and Hologram Formation -- 5.1 Basic Constitution of Transmission Electron Microscope -- 5.1.1 Electron Gun System -- 5.1.2 Illumination System -- 5.1.3 Imaging System -- 5.1.3.1 Focal Length -- 5.1.3.2 Spherical Aberration Coefficient -- 5.1.3.3 Chromatic Aberration Coefficient -- 5.1.3.4 Minimum Step of Defocus -- 5.1.4 Observation System -- 5.1.4.1 Television Camera -- 5.1.4.2 Slow?Scan Charge?Coupled Device Camera -- 5.1.5 Operation of Transmission Electron Microscope -- 5.1.5.1 Adjustment of Electron Gun -- 5.1.5.2 Alignment and Astigmatism Correction of Condenser Lenses -- 5.1.5.3 Alignment of Voltage Center and Correction of Objective Lens Astigmatism -- 5.1.5.4 Correction of Intermediate Lens Astigmatism -- 5.1.5.5 Alignment of Projector Lens -- 5.1.5.6 Adjustment of Objective Lens Focus -- 5.2 Biprism System -- 5.3 Coherence Lengths -- 5.4 Formation of Interference Fringes. 327 $a5.4.1 Geometrical?Path Interpretation with Two Virtual Sources -- 5.4.2 Wave?Optical Treatment -- 5.4.2.1 Wave Function at Wire Plane -- 5.4.2.2 Green's Integral Theorem -- 5.4.2.3 Explicit Form of Green's Function -- 5.4.2.4 Intensity Distribution of Interference Fringes -- 5.4.2.5 Stationary Points and Interference Region -- 5.4.2.6 Spacing of Interference Fringes -- 5.5 Simulation of Interference Fringes -- References -- Chapter 6 Related Techniques and Specialized Instrumentation -- 6.1 Split?Illumination Electron Holography -- 6.2 Dark?Field Electron Holographic Interferometry -- 6.3 Lorentz Microscopy -- 6.3.1 Fresnel Mode (Defocusing Mode) -- 6.3.2 Foucault Mode (In?Focus Mode) -- 6.3.3 Lorentz Microscopy Using Scanning Transmission Electron Microscope -- 6.3.4 Phase Reconstruction Using Transport?of?Intensity Equation -- 6.4 Magnetically Shielded Lens and High?Voltage Electron Microscope -- 6.5 Aberration?Corrected Lens System -- 6.6 Multifunctional Specimen Holders with Piezodriving Probes -- 6.7 Specimen Preparation Techniques -- 6.8 High?Resolution and Analytical Electron Microscopy -- 6.8.1 Conventional Microscopy and High?Resolution Electron Microscopy -- 6.8.2 High?Angle Annular Dark?Field Method -- 6.8.3 Analytical Electron Microscopy -- References -- Part III Application -- Chapter 7 Electric Field Analysis -- 7.1 Measurement of Inner Potential -- 7.1.1 Diamond?Like Carbon -- 7.1.2 SiO2 Particles -- 7.1.3 p-n Junctions and Low?Dimensional Materials -- 7.2 Electric Field Analysis of Precipitates in Multilayer Ceramic Capacitor -- 7.3 Analysis of Spontaneous Polarization in Oxide Heterojunctions -- 7.4 Evaluation of Electric Charge with Laser Irradiation -- 7.5 Analysis of Conductivity with Microstructure Changes -- 7.6 Detection of Electric Field Variation Around Field Emitter -- References -- Chapter 8 Magnetic Field Analysis. 327 $a8.1 Quantitative Analysis of Magnetic Flux Distribution of Nanoparticles -- 8.2 Observation of Magnetization Processes -- 8.2.1 Soft Magnetic Materials -- 8.2.2 Hard Magnetic Materials -- 8.2.3 Magnetic Recording Materials -- 8.2.4 Ferromagnetic Shape?Memory Materials -- 8.3 Observation of Magnetic Structure Change with Temperature -- 8.4 Analysis of Three?Dimensional Magnetic Structures -- References -- Part IV Visualization of Collective Motions of Electrons and Their Interpretation -- Chapter 9 Charging Effects and Secondary Electron Distribution of Biological Specimens -- 9.1 Visualization of Stationary Electron Orbits -- 9.1.1 Stationary Electron Orbits Observed Around Microfibrils -- 9.1.2 Simulation of Electron Orbits Around Microfibril -- 9.1.3 Interpretation of Reconstructed Amplitude Image -- 9.1.4 Simulation of Visibility of Interference Fringes for Electron Motion -- 9.1.5 Change in Electron Orbits Due to Insertion of Electrode -- 9.2 Visualization of Accumulative and Collective Motions of Electrons -- References -- Chapter 10 Collective Motions of Electrons Around Various Charged Insulators -- 10.1 Accumulation of Electrons on Cleaved Surfaces of BaTiO3 -- 10.2 Dependency of Electron Distribution on Surface Condition of Epoxy Resin and Kidney -- 10.3 Electron Distribution Between Epoxy Resin and Kidney -- 10.4 Control of Electron Distribution Around Cellulose Nanofibers by Applying External Electric Field -- References -- Chapter 11 Extension of Analysis of Collective Motions of Electrons -- 11.1 Electron Spin Polarization -- 11.2 Accumulation of Electrons on Bulk Insulator Surface -- References -- Chapter 12 Theoretical Consideration on Visualizing Collective Motions of Electrons -- 12.1 De Broglie's Matter Wave and Wave Function -- 12.2 Disturbance?Free Observation -- 12.3 Electron Interference and General Relativity. 327 $a12.3.1 Einstein's Field Equations Based on General Relativity -- 12.3.2 Infeld and Schild's Approximate Solution to Einstein's Field Equations -- 12.4 Spinning Linear Wave Model -- 12.5 Electron Interference Formulated with Spinning Linear Wave -- 12.5.1 Interpretation of Diffraction Intensity -- 12.5.2 Interpretation of Interference Fringes -- 12.5.3 Simulation of Interference Fringes -- 12.6 Interpretation of Wave-Particle Dualism -- References -- A Physical Constants, Conversion Factors, and Electron Wavelength -- Index -- EULA. 606 $aElectron holography 606 $aMaterials$xElectric properties 606 $aTransmission electron microscopy 615 0$aElectron holography. 615 0$aMaterials$xElectric properties. 615 0$aTransmission electron microscopy. 676 $a502.825 700 $aShindo?$b D$g(Daisuke),$f1953-$01675138 702 $aTomita$b Takeshi 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910831182803321 996 $aMaterial characterization using electron holography$94040405 997 $aUNINA