Vai al contenuto principale della pagina
| Autore: |
Beltrametti Mauro <1948->
|
| Titolo: |
The adjunction theory of complex projective varieties [[electronic resource] /] / by Mauro Beltrametti, Andrew Sommese
|
| Pubblicazione: | Berlin ; ; New York, : W. de Gruyter, 1995 |
| Descrizione fisica: | 1 online resource (420 p.) |
| Disciplina: | 516.3/5 |
| Soggetto topico: | Adjunction theory |
| Embeddings (Mathematics) | |
| Algebraic varieties | |
| Projective spaces | |
| Soggetto genere / forma: | Electronic books. |
| Altri autori: |
SommeseAndrew John
|
| Note generali: | Description based upon print version of record. |
| Nota di bibliografia: | Includes bibliographical references and index. |
| Nota di contenuto: | Front matter -- Chapter 1. General background results -- Chapter 2. Consequences of positivity -- Chapter 3. The basic varieties of adjunction theory -- Chapter 4. The Hilbert scheme and extremal rays -- Chapter 5. Restrictions imposed by ample divisors -- Chapter 6. Families of unbreakable rational curves -- Chapter 7. General adjunction theory -- Chapter 8. Background for classical adjunction theory -- Chapter 9. The adjunction mapping -- Chapter 10. Classical adjunction theory of surfaces -- Chapter 11. Classical adjunction theory in dimension ≥ 3 -- Chapter 12. The second reduction in dimension three -- Chapter 13. Varieties (ℳ, ℒ) with k(ΚΜ + (dim ℳ - 2)ℒ)≥0 -- Chapter 14. Special varieties -- Bibliography -- Index |
| Sommario/riassunto: | An overview of developments in the past 15 years of adjunction theory, the study of the interplay between the intrinsic geometry of a projective variety and the geometry connected with some embedding of the variety into a projective space. Topics include consequences of positivity, the Hilbert schem |
| Titolo autorizzato: | Adjunction theory of complex projective varieties ![]() |
| ISBN: | 3-11-087174-2 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910462555903321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |