|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910462555903321 |
|
|
Autore |
Beltrametti Mauro <1948-> |
|
|
Titolo |
The adjunction theory of complex projective varieties [[electronic resource] /] / by Mauro Beltrametti, Andrew Sommese |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin ; ; New York, : W. de Gruyter, 1995 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (420 p.) |
|
|
|
|
|
|
Collana |
|
De Gruyter Expositions in Mathematics ; ; 16 |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Adjunction theory |
Embeddings (Mathematics) |
Algebraic varieties |
Projective spaces |
Electronic books. |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Front matter -- Chapter 1. General background results -- Chapter 2. Consequences of positivity -- Chapter 3. The basic varieties of adjunction theory -- Chapter 4. The Hilbert scheme and extremal rays -- Chapter 5. Restrictions imposed by ample divisors -- Chapter 6. Families of unbreakable rational curves -- Chapter 7. General adjunction theory -- Chapter 8. Background for classical adjunction theory -- Chapter 9. The adjunction mapping -- Chapter 10. Classical adjunction theory of surfaces -- Chapter 11. Classical adjunction theory in dimension ≥ 3 -- Chapter 12. The second reduction in dimension three -- Chapter 13. Varieties (ℳ, ℒ) with k(ΚΜ + (dim ℳ - 2)ℒ)≥0 -- Chapter 14. Special varieties -- Bibliography -- Index |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
An overview of developments in the past 15 years of adjunction theory, the study of the interplay between the intrinsic geometry of a projective variety and the geometry connected with some embedding of the variety into a projective space. Topics include consequences of positivity, the Hilbert schem |
|
|
|
|
|
|
|