Vai al contenuto principale della pagina

Complex multiplication / / Reinhard Schertz [[electronic resource]]



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Schertz Reinhard <1943-> Visualizza persona
Titolo: Complex multiplication / / Reinhard Schertz [[electronic resource]] Visualizza cluster
Pubblicazione: Cambridge : , : Cambridge University Press, , 2010
Descrizione fisica: 1 online resource (xiii, 361 pages) : digital, PDF file(s)
Disciplina: 516.3/52
Soggetto topico: Multiplication, Complex
Note generali: Title from publisher's bibliographic system (viewed on 05 Oct 2015).
Nota di contenuto: Preface -- 1. Elliptic functions -- 2. Modular functions -- 3. Basic facts from number theory -- 4. Factorisation of singular values -- 5. The reciprocity law -- 6. Generation of ring class fields and ray class fields -- 7. Integral basis in ray class fields -- 8. Galois module structure -- 9. Berwick's congruences -- 10. Cryptographically relevant elliptic curves -- 11. The class number formulas of Curt Meyer -- 12. Arithmetic interpretation of class number formulas -- References -- Index of notation -- Index.
Sommario/riassunto: This is a self-contained 2010 account of the state of the art in classical complex multiplication that includes recent results on rings of integers and applications to cryptography using elliptic curves. The author is exhaustive in his treatment, giving a thorough development of the theory of elliptic functions, modular functions and quadratic number fields and providing a concise summary of the results from class field theory. The main results are accompanied by numerical examples, equipping any reader with all the tools and formulas they need. Topics covered include: the construction of class fields over quadratic imaginary number fields by singular values of the modular invariant j and Weber's tau-function; explicit construction of rings of integers in ray class fields and Galois module structure; the construction of cryptographically relevant elliptic curves over finite fields; proof of Berwick's congruences using division values of the Weierstrass p-function; relations between elliptic units and class numbers.
Titolo autorizzato: Complex multiplication  Visualizza cluster
ISBN: 1-107-20891-2
1-139-63666-9
1-282-65186-2
9786612651861
0-511-77543-1
0-511-77619-5
0-511-77361-7
0-511-77254-8
0-511-77689-6
0-511-77467-2
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910458424203321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: New mathematical monographs ; ; 15.