LEADER 03469nam 22006492 450 001 9910458424203321 005 20151005020621.0 010 $a1-107-20891-2 010 $a1-139-63666-9 010 $a1-282-65186-2 010 $a9786612651861 010 $a0-511-77543-1 010 $a0-511-77619-5 010 $a0-511-77361-7 010 $a0-511-77254-8 010 $a0-511-77689-6 010 $a0-511-77467-2 035 $a(CKB)2560000000011967 035 $a(EBL)542892 035 $a(OCoLC)645098289 035 $a(SSID)ssj0000399879 035 $a(PQKBManifestationID)11243892 035 $a(PQKBTitleCode)TC0000399879 035 $a(PQKBWorkID)10386320 035 $a(PQKB)10457327 035 $a(UkCbUP)CR9780511776892 035 $a(MiAaPQ)EBC542892 035 $a(Au-PeEL)EBL542892 035 $a(CaPaEBR)ebr10397382 035 $a(CaONFJC)MIL265186 035 $a(EXLCZ)992560000000011967 100 $a20100512d2010|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aComplex multiplication /$fReinhard Schertz$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2010. 215 $a1 online resource (xiii, 361 pages) $cdigital, PDF file(s) 225 1 $aNew mathematical monographs ;$v15 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a1-107-47177-X 311 $a0-521-76668-0 327 $aPreface -- 1. Elliptic functions -- 2. Modular functions -- 3. Basic facts from number theory -- 4. Factorisation of singular values -- 5. The reciprocity law -- 6. Generation of ring class fields and ray class fields -- 7. Integral basis in ray class fields -- 8. Galois module structure -- 9. Berwick's congruences -- 10. Cryptographically relevant elliptic curves -- 11. The class number formulas of Curt Meyer -- 12. Arithmetic interpretation of class number formulas -- References -- Index of notation -- Index. 330 $aThis is a self-contained 2010 account of the state of the art in classical complex multiplication that includes recent results on rings of integers and applications to cryptography using elliptic curves. The author is exhaustive in his treatment, giving a thorough development of the theory of elliptic functions, modular functions and quadratic number fields and providing a concise summary of the results from class field theory. The main results are accompanied by numerical examples, equipping any reader with all the tools and formulas they need. Topics covered include: the construction of class fields over quadratic imaginary number fields by singular values of the modular invariant j and Weber's tau-function; explicit construction of rings of integers in ray class fields and Galois module structure; the construction of cryptographically relevant elliptic curves over finite fields; proof of Berwick's congruences using division values of the Weierstrass p-function; relations between elliptic units and class numbers. 410 0$aNew mathematical monographs ;$v15. 606 $aMultiplication, Complex 615 0$aMultiplication, Complex. 676 $a516.3/52 700 $aSchertz$b Reinhard$f1943-$01046769 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910458424203321 996 $aComplex multiplication$92473939 997 $aUNINA