Vai al contenuto principale della pagina

Embedding problems in symplectic geometry [[electronic resource] /] / by Felix Schlenk



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Schlenk Felix <1970-> Visualizza persona
Titolo: Embedding problems in symplectic geometry [[electronic resource] /] / by Felix Schlenk Visualizza cluster
Pubblicazione: Berlin ; ; New York, : Walter de Gruyter, c2005
Descrizione fisica: 1 online resource (260 p.)
Disciplina: 516.3/6
Soggetto topico: Symplectic geometry
Embeddings (Mathematics)
Soggetto genere / forma: Electronic books.
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references (p. 241-246) and index.
Nota di contenuto: Front matter -- Contents -- Introduction -- Proof of Theorem 1 -- Proof of Theorem 2 -- Multiple symplectic folding in four dimensions -- Symplectic folding in higher dimensions -- Proof of Theorem 3 -- Symplectic wrapping -- Proof of Theorem 4 -- Packing symplectic manifolds by hand -- Appendix -- Backmatter
Sommario/riassunto: Symplectic geometry is the geometry underlying Hamiltonian dynamics, and symplectic mappings arise as time-1-maps of Hamiltonian flows. The spectacular rigidity phenomena for symplectic mappings discovered in the last two decades show that certain things cannot be done by a symplectic mapping. For instance, Gromov's famous ""non-squeezing'' theorem states that one cannot map a ball into a thinner cylinder by a symplectic embedding. The aim of this book is to show that certain other things can be done by symplectic mappings. This is achieved by various elementary and explicit symplectic embedding.
Titolo autorizzato: Embedding problems in symplectic geometry  Visualizza cluster
ISBN: 1-282-19481-X
9786612194818
3-11-915917-4
3-11-019969-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910451251003321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Gruyter expositions in mathematics ; ; 40.