Vai al contenuto principale della pagina

Planets, Stars and Stellar Systems [[electronic resource] ] : Volume 2: Astronomical Techniques, Software, and Data / / edited by Howard E. Bond



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Planets, Stars and Stellar Systems [[electronic resource] ] : Volume 2: Astronomical Techniques, Software, and Data / / edited by Howard E. Bond Visualizza cluster
Pubblicazione: Dordrecht : , : Springer Netherlands : , : Imprint : Springer, , 2013
Edizione: 1st ed. 2013.
Descrizione fisica: 1 online resource (38 illus. in color. eReference.)
Disciplina: 520
Soggetto topico: Observations, Astronomical
Astronomy—Observations
Microwaves
Optical engineering
Statistics 
Data mining
Physics
Astronomy, Observations and Techniques
Microwaves, RF and Optical Engineering
Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences
Data Mining and Knowledge Discovery
Numerical and Computational Physics, Simulation
Persona (resp. second.): BondHoward E
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di contenuto: Intro -- Series Preface -- Preface to Volume 2 -- Editor-in-Chief -- Volume Editor -- Table of Contents -- List of Contributors -- 1 Astronomical Photometry -- 1 Introduction -- 2 General Properties of Photometric Detectors -- 2.1 Photographic Plates -- 2.2 Photomultipliers -- 2.3 CCDs -- 3 The General Photometric Problem -- 3.1 Atmospheric Extinction -- 3.2 Bandpass Mismatch -- 3.3 Zero Points -- 3.4 Methodology -- 3.5 Higher-Order Effects -- 3.6 General Comments -- 3.7 Differential Photometry -- Time-Domain Photometry -- 4 Measuring the Instrumental Magnitudes -- 4.1 Photoelectric Photometry -- 4.2 Aperture Photometry with CCDs -- 4.3 Concentric-Aperture Photometry with CCDs -- 4.4 Profile-Fitting Photometry -- References -- 2 Astronomical Spectroscopy -- 1 Introduction -- 2 An Introduction to Astronomical Spectrographs -- 2.1 The Basics -- 2.1.1 Selecting a Blocking Filter -- 2.1.2 Choosing a Grating -- 2.2 Conventional Long-Slit Spectrographs -- 2.2.1 An Example: The Kitt Peak RC Spectrograph -- 2.3 Echelle Spectrographs -- 2.3.1 An Example: MagE -- 2.3.2 Coude Spectrographs -- 2.4 Multi-object Spectrometers -- 2.4.1 Multi-slit Spectrographs -- Example: IMACS -- 2.4.2 Fiber-fed Bench-Mounted Spectrographs -- An Example: Hectospec -- 2.5 Extension to the UV and NIR -- 2.5.1 The Near Ultraviolet -- 2.5.2 Near-Infrared Spectroscopy and OSIRIS -- 2.6 Spatially Resolved Spectroscopy of Extended Sources:Fabry-Perots and Integral Field Spectroscopy -- 3 Observing and Reduction Techniques -- 3.1 Basic Optical Reductions -- 3.1.1 Multi-object Techniques -- 3.1.2 NIR Techniques -- 3.2 Further Details -- 3.2.1 Differential Refraction -- 3.2.2 Determining Isolation -- 3.2.3 Assigning Fibers and Designing Multi-slit Masks -- 3.2.4 Placing Two Stars on a Long Slit -- 3.2.5 Optimal Extraction -- 3.2.6 Long-Slit Flat-Fielding Issues -- Featureless Flats.
Illumination Correction Flats -- Summary -- 3.2.7 Radial Velocities and Velocity Dispersions -- Precision Radial Velocities -- Laboratory Wavelengths -- 3.2.8 Some Useful Spectral Atlases -- 3.3 Observing Techniques: What Happens at Night -- 3.3.1 Observing with a Long-Slit Spectrograph -- 3.3.2 Observing with a Multi-fiber Spectrometer -- 3.3.3 Observing with a NIR Spectrometer -- Wrap-Up and Acknowledgments -- References -- 3 Infrared AstronomyFundamentals -- 1 Introduction -- 1.1 Terminology and Units -- 1.2 Blackbody Radiation and Emissivity -- 2 Overview of Atmospheric Transmission from 1 to 1,000m -- 2.1 Atmospheric Extinction -- 2.2 Atmospheric Refraction -- 3 Background Emission from the Ground -- 3.1 Near-IR Airglow -- 3.2 Thermal Emission from Sky and Telescope -- 4 Background Emission from Space -- 5 Detectors Used in Infrared Astronomy -- 5.1 Thermal Detectors -- 5.2 Photon Detectors -- 5.3 Detector Arrays -- 5.4 Microwave Kinetic Induction Detectors -- 6 Optimizing the Signal-to-Noise Ratio -- 6.1 Signal-to-Noise Equation -- 6.2 Ground-Based Observations in the Infrared -- 6.3 IR-Optimized Telescopes -- 6.4 Data Taking in the Presence of High Background Emission -- 6.4.1 Near-infrared Imaging -- 6.4.2 Mid-infrared Imaging -- 6.4.3 Reducing the OH Background -- 6.5 Airborne and Space Infrared Missions -- 6.5.1 Airborne Astronomy -- 6.5.2 Space Infrared Missions -- IRAS -- Spitzer Space Telescope -- Herschel Space Telescope -- Wide Field Infrared Survey Experiment -- James Webb Space Telescope -- 7 Infrared Standards and Absolute Calibration -- 7.1 Ground-Based Photometry -- 7.2 Near-IR Sky Surveys -- 7.3 Space Infrared Calibration -- IRAS -- MSX -- Spitzer -- WISE -- Hubble Space Telescope and JWST -- Herschel Space Observatory -- 7.4 Absolute Calibration -- 7.5 Definition of a Filter Wavelength.
7.6 Correction to a Monochromatic Wavelength -- 8 Infrared Spectroscopy -- 8.1 Spectroscopic Standards (Spectral Libraries) -- 8.2 Taking Near-IR Spectra: An Example -- 8.3 Telluric Correction -- Acknowledgments -- References -- 4 Astronomical Polarimetry:Polarized Views of Stars andPlanets -- 1 Introduction -- 2 What is Polarization? -- 2.1 Jones Formalism -- 2.2 Stokes Formalism -- 2.3 Mueller Matrices -- 2.4 The Poincaré sphere -- 3 Polarizing Mechanisms -- 3.1 Broadband Polarization -- 3.1.1 Scattering and Reflection -- 3.1.2 Polarization-Dependent Absorption and Emission -- 3.1.3 Synchrotron and Cyclotron Radiation -- 3.2 Spectral Line Polarization -- 3.2.1 The Zeeman Effect -- 3.2.2 The Hanle Effect and Other Line Polarization Effects -- 4 The Polarimetrist's Toolkit -- 4.1 Polarizers -- 4.1.1 Sheet or Plate Polarizers -- 4.1.2 Polarizing Beam-Splitters -- 4.2 Retarders -- 4.2.1 Fixed Linear Retarders -- 4.2.2 Variable Retarders -- 4.3 Novel Components -- 4.4 Detectors -- 5 Polarimeter Implementation: How to Deal with Systematic Effects -- 5.1 Some Definitions -- 5.2 Modulation and Demodulation -- 5.3 Boosting Polarimetric Sensitivity -- 5.4 Spectral Modulation -- 5.5 Instrumental Polarization Effects -- 5.6 Calibration -- 5.7 Performance Prediction -- 6 Modern Polarimeters -- 6.1 Requirements -- 6.2 Dual-Beam Polarimeters -- 6.3 Polarizer-Only Polarimeters -- 6.4 Solar Polarimetry -- 6.5 Exoplanet Detection and Characterization -- Acknowledgments -- References -- 5 Sky Surveys -- 1 Introduction -- 1.1 Definitions and Caveats -- 1.2 The Types and Goals of Sky Surveys -- 1.3 The Data Explosion -- 2 A (Very) Brief History of Sky Surveys -- 3 A Systematic Exploration of the Sky -- 3.1 The Role of Technology -- 3.2 Data Parameter Spaces -- 3.3 Exploring the Parameter Spaces -- 4 Characteristics and Examples of Sky Surveys.
4.1 A Sampler of Panoramic Sky Surveys and Catalogs -- 4.1.1 Surveys and Catalogs in the Visible Regime -- 4.1.2 Surveys in the Infrared -- 4.1.3 Surveys and Catalogs in the Radio -- 4.1.4 Surveys at Higher Energies -- 4.2 Synoptic Sky Surveys and Exploration of the Time Domain -- 4.2.1 General Synoptic Surveys in the Visible Regime -- 4.2.2 Supernova Surveys -- 4.2.3 Synoptic Surveys for Minor Bodies in the Solar System -- 4.2.4 Microlensing Surveys -- 4.2.5 Radio Synoptic Surveys -- 4.2.6 Other Wavelength Regimes -- 4.3 Toward the Petascale Data Streams and Beyond -- 4.4 Deep Field Surveys -- 4.5 Spectroscopic Surveys -- 4.6 Figures of Merit -- 5 From the Raw Data to Science-Ready Archives -- 5.1 Data Processing Pipelines -- 5.2 Source and Event Classification -- 5.3 Data Archives, Analysis, and Exploration -- 6 Concluding Comments -- Acknowledgments -- Appendix: A Partial List of Sky Surveys, Facilities, and Archives as of 2011 -- References -- 6 Techniques of RadioAstronomy -- 1 Introduction -- 1.1 A Selected List of Radio Astronomy Facilities -- 2 Radiative Transfer and Black Body Radiation -- 2.1 The Nyquist Theorem and Noise Temperature -- 2.2 Overview of Intensity, Flux Density, and Main Beam Brightness Temperature -- 2.3 Interstellar Dispersion and Polarization -- 3 Receiver Systems -- 3.1 Coherent and Incoherent Receivers -- 3.1.1 Receiver Calibration -- 3.1.2 Noise Uncertainties Due to Random Processes -- 3.1.3 Receiver Stability -- 4 Practical Aspects of Receivers -- 4.1 Bolometer Radiometers -- 4.2 Coherent Receivers -- 4.2.1 Noise Contributions in Coherent Receivers -- 4.2.2 Mixers -- 4.2.3 Square-Law Detectors -- 4.2.4 The Minimum Noise in a Coherent System -- 4.3 Back Ends -- 4.3.1 Polarimeters -- 4.3.2 Spectrometers -- 5 Antennas -- 5.1 The Hertz Dipole -- 5.2 Filled Apertures -- 5.2.1 Angular Resolution and Efficiencies.
5.2.2 Efficiencies for Compact Sources -- 5.2.3 Foci, Blockage, and Surface Accuracy -- 5.3 Single Dish Observational Techniques -- 5.3.1 The Earth's Atmosphere -- 5.3.2 Meter and Centimeter Calibration Procedures -- 5.3.3 Millimeter and Submillimeter Calibration Procedures -- 5.3.4 Bolometer Calibrations -- 5.3.5 Continuum Observing Strategies -- 5.3.6 Additional Requirements for Spectral Line Observations -- 5.3.7 Spectral Line Observing Strategies -- 6 Interferometers and Aperture Synthesis -- 6.1 Calibration -- 6.2 Responses of Interferometers -- 6.2.1 Time Delays and Bandwidth -- 6.2.2 Beam Narrowing -- 6.2.3 Source Size -- 6.3 Aperture Synthesis -- 6.3.1 Interferometric Observations -- 6.4 Interferometer Sensitivity -- 6.5 Corrections of Visibility Functions -- 6.5.1 Amplitude and Phase Closure -- 6.5.2 Calibrations, Gridding, FFTs, Weighting, and Self-Calibration -- 6.5.3 More Elaborate Improvements of Visibility Functions: The CLEANingProcedure -- 6.5.4 More Elaborate Improvements of Visibility Functions: The Maximum EntropyProcedure -- Acknowledgments -- References -- 7 Radio and OpticalInterferometry: BasicObserving Techniquesand Data Analysis -- 1 Interferometry in Astronomy -- 1.1 Introduction -- 1.2 Scientific Impact -- 2 Interferometry in Theory and Practice -- 2.1 Introduction -- 2.2 Interferometry in Theory -- 2.3 Interferometry in Practice -- 2.3.1 Quantum Limits of Amplifiers -- 2.4 Atmospheric Turbulence -- 2.4.1 Phase Fluctuations: Length Scale -- 2.4.2 Phase Fluctuations: Time Scale -- 2.4.3 Calibration: Isoplanatic Angle -- 3 Planning Interferometer Observations -- 3.1 Sensitivity -- 3.1.1 Radio Sensitivity -- 3.1.2 Visible and Infrared Sensitivity -- 3.1.3 Overcoming the Effects of the Atmosphere: Phase Referencing, AdaptiveOptics, and Fringe Tracking -- 3.2 (u,v) Coverage -- 3.3 Field-of-View.
3.4 Spectroscopic Capabilities.
Sommario/riassunto: This is volume 2 of Planets, Stars and Stellar Systems, a six-volume compendium of modern astronomical research, covering subjects of key interest to the main fields of contemporary astronomy. This volume on “Astronomical Techniques, Software, and Data” edited by Howard E. Bond presents accessible review chapters on Astronomical Photometry, Astronomical Spectroscopy, Infrared Astronomy Fundamentals, Astronomical Polarimetry: Polarized Views of Stars and Planets, Sky Surveys,Techniques of Radio Astronomy,Radio and Optical Interferometry: Basic Observing Techniques and Data Analysis, Absolute Calibration of Spectrophotometric Standard Stars,Virtual Observatories, Data Mining, and Astroinformatics, Statistical Methods for Astronomy, Numerical Techniques in Astrophysics . All chapters of the handbook were written by practicing professionals. They include sufficient background material and references to the current literature to allow readers to learn enough about a specialty within astronomy, astrophysics and cosmology to get started on their own practical research projects. In the spirit of the series Stars and Stellar Systems published by Chicago University Press in the 1960s and 1970s, each chapter of Planets, Stars and Stellar Systems can stand on its own as a fundamental review of its respective sub-discipline, and each volume can be used as a textbook or recommended reference work for advanced undergraduate or postgraduate courses. Advanced students and professional astronomers in their roles as both lecturers and researchers will welcome Planets, Stars and Stellar Systems as a comprehensive and pedagogical reference work on astronomy, astrophysics and cosmology.
Titolo autorizzato: Planets, Stars and Stellar Systems  Visualizza cluster
ISBN: 94-007-5618-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910438119903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui