LEADER 14214nam 22008655 450 001 9910438119903321 005 20200630034600.0 010 $a94-007-5618-6 024 7 $a10.1007/978-94-007-5618-2 035 $a(CKB)3460000000120324 035 $a(SSID)ssj0000879489 035 $a(PQKBManifestationID)11487986 035 $a(PQKBTitleCode)TC0000879489 035 $a(PQKBWorkID)10851677 035 $a(PQKB)11383891 035 $a(DE-He213)978-94-007-5618-2 035 $a(MiAaPQ)EBC3095766 035 $a(Au-PeEL)EBL3095766 035 $a(CaPaEBR)ebr10969018 035 $a(OCoLC)849301715 035 $a(PPN)168341360 035 $a(EXLCZ)993460000000120324 100 $a20130228d2013 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aPlanets, Stars and Stellar Systems$b[electronic resource] $eVolume 2: Astronomical Techniques, Software, and Data /$fedited by Howard E. Bond 205 $a1st ed. 2013. 210 1$aDordrecht :$cSpringer Netherlands :$cImprint: Springer,$d2013. 215 $a1 online resource (38 illus. in color. eReference.) 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a94-007-5619-4 311 $a94-007-5617-8 327 $aIntro -- Series Preface -- Preface to Volume 2 -- Editor-in-Chief -- Volume Editor -- Table of Contents -- List of Contributors -- 1 Astronomical Photometry -- 1 Introduction -- 2 General Properties of Photometric Detectors -- 2.1 Photographic Plates -- 2.2 Photomultipliers -- 2.3 CCDs -- 3 The General Photometric Problem -- 3.1 Atmospheric Extinction -- 3.2 Bandpass Mismatch -- 3.3 Zero Points -- 3.4 Methodology -- 3.5 Higher-Order Effects -- 3.6 General Comments -- 3.7 Differential Photometry -- Time-Domain Photometry -- 4 Measuring the Instrumental Magnitudes -- 4.1 Photoelectric Photometry -- 4.2 Aperture Photometry with CCDs -- 4.3 Concentric-Aperture Photometry with CCDs -- 4.4 Profile-Fitting Photometry -- References -- 2 Astronomical Spectroscopy -- 1 Introduction -- 2 An Introduction to Astronomical Spectrographs -- 2.1 The Basics -- 2.1.1 Selecting a Blocking Filter -- 2.1.2 Choosing a Grating -- 2.2 Conventional Long-Slit Spectrographs -- 2.2.1 An Example: The Kitt Peak RC Spectrograph -- 2.3 Echelle Spectrographs -- 2.3.1 An Example: MagE -- 2.3.2 Coude Spectrographs -- 2.4 Multi-object Spectrometers -- 2.4.1 Multi-slit Spectrographs -- Example: IMACS -- 2.4.2 Fiber-fed Bench-Mounted Spectrographs -- An Example: Hectospec -- 2.5 Extension to the UV and NIR -- 2.5.1 The Near Ultraviolet -- 2.5.2 Near-Infrared Spectroscopy and OSIRIS -- 2.6 Spatially Resolved Spectroscopy of Extended Sources:Fabry-Perots and Integral Field Spectroscopy -- 3 Observing and Reduction Techniques -- 3.1 Basic Optical Reductions -- 3.1.1 Multi-object Techniques -- 3.1.2 NIR Techniques -- 3.2 Further Details -- 3.2.1 Differential Refraction -- 3.2.2 Determining Isolation -- 3.2.3 Assigning Fibers and Designing Multi-slit Masks -- 3.2.4 Placing Two Stars on a Long Slit -- 3.2.5 Optimal Extraction -- 3.2.6 Long-Slit Flat-Fielding Issues -- Featureless Flats. 327 $aIllumination Correction Flats -- Summary -- 3.2.7 Radial Velocities and Velocity Dispersions -- Precision Radial Velocities -- Laboratory Wavelengths -- 3.2.8 Some Useful Spectral Atlases -- 3.3 Observing Techniques: What Happens at Night -- 3.3.1 Observing with a Long-Slit Spectrograph -- 3.3.2 Observing with a Multi-fiber Spectrometer -- 3.3.3 Observing with a NIR Spectrometer -- Wrap-Up and Acknowledgments -- References -- 3 Infrared AstronomyFundamentals -- 1 Introduction -- 1.1 Terminology and Units -- 1.2 Blackbody Radiation and Emissivity -- 2 Overview of Atmospheric Transmission from 1 to 1,000m -- 2.1 Atmospheric Extinction -- 2.2 Atmospheric Refraction -- 3 Background Emission from the Ground -- 3.1 Near-IR Airglow -- 3.2 Thermal Emission from Sky and Telescope -- 4 Background Emission from Space -- 5 Detectors Used in Infrared Astronomy -- 5.1 Thermal Detectors -- 5.2 Photon Detectors -- 5.3 Detector Arrays -- 5.4 Microwave Kinetic Induction Detectors -- 6 Optimizing the Signal-to-Noise Ratio -- 6.1 Signal-to-Noise Equation -- 6.2 Ground-Based Observations in the Infrared -- 6.3 IR-Optimized Telescopes -- 6.4 Data Taking in the Presence of High Background Emission -- 6.4.1 Near-infrared Imaging -- 6.4.2 Mid-infrared Imaging -- 6.4.3 Reducing the OH Background -- 6.5 Airborne and Space Infrared Missions -- 6.5.1 Airborne Astronomy -- 6.5.2 Space Infrared Missions -- IRAS -- Spitzer Space Telescope -- Herschel Space Telescope -- Wide Field Infrared Survey Experiment -- James Webb Space Telescope -- 7 Infrared Standards and Absolute Calibration -- 7.1 Ground-Based Photometry -- 7.2 Near-IR Sky Surveys -- 7.3 Space Infrared Calibration -- IRAS -- MSX -- Spitzer -- WISE -- Hubble Space Telescope and JWST -- Herschel Space Observatory -- 7.4 Absolute Calibration -- 7.5 Definition of a Filter Wavelength. 327 $a7.6 Correction to a Monochromatic Wavelength -- 8 Infrared Spectroscopy -- 8.1 Spectroscopic Standards (Spectral Libraries) -- 8.2 Taking Near-IR Spectra: An Example -- 8.3 Telluric Correction -- Acknowledgments -- References -- 4 Astronomical Polarimetry:Polarized Views of Stars andPlanets -- 1 Introduction -- 2 What is Polarization? -- 2.1 Jones Formalism -- 2.2 Stokes Formalism -- 2.3 Mueller Matrices -- 2.4 The Poincare? sphere -- 3 Polarizing Mechanisms -- 3.1 Broadband Polarization -- 3.1.1 Scattering and Reflection -- 3.1.2 Polarization-Dependent Absorption and Emission -- 3.1.3 Synchrotron and Cyclotron Radiation -- 3.2 Spectral Line Polarization -- 3.2.1 The Zeeman Effect -- 3.2.2 The Hanle Effect and Other Line Polarization Effects -- 4 The Polarimetrist's Toolkit -- 4.1 Polarizers -- 4.1.1 Sheet or Plate Polarizers -- 4.1.2 Polarizing Beam-Splitters -- 4.2 Retarders -- 4.2.1 Fixed Linear Retarders -- 4.2.2 Variable Retarders -- 4.3 Novel Components -- 4.4 Detectors -- 5 Polarimeter Implementation: How to Deal with Systematic Effects -- 5.1 Some Definitions -- 5.2 Modulation and Demodulation -- 5.3 Boosting Polarimetric Sensitivity -- 5.4 Spectral Modulation -- 5.5 Instrumental Polarization Effects -- 5.6 Calibration -- 5.7 Performance Prediction -- 6 Modern Polarimeters -- 6.1 Requirements -- 6.2 Dual-Beam Polarimeters -- 6.3 Polarizer-Only Polarimeters -- 6.4 Solar Polarimetry -- 6.5 Exoplanet Detection and Characterization -- Acknowledgments -- References -- 5 Sky Surveys -- 1 Introduction -- 1.1 Definitions and Caveats -- 1.2 The Types and Goals of Sky Surveys -- 1.3 The Data Explosion -- 2 A (Very) Brief History of Sky Surveys -- 3 A Systematic Exploration of the Sky -- 3.1 The Role of Technology -- 3.2 Data Parameter Spaces -- 3.3 Exploring the Parameter Spaces -- 4 Characteristics and Examples of Sky Surveys. 327 $a4.1 A Sampler of Panoramic Sky Surveys and Catalogs -- 4.1.1 Surveys and Catalogs in the Visible Regime -- 4.1.2 Surveys in the Infrared -- 4.1.3 Surveys and Catalogs in the Radio -- 4.1.4 Surveys at Higher Energies -- 4.2 Synoptic Sky Surveys and Exploration of the Time Domain -- 4.2.1 General Synoptic Surveys in the Visible Regime -- 4.2.2 Supernova Surveys -- 4.2.3 Synoptic Surveys for Minor Bodies in the Solar System -- 4.2.4 Microlensing Surveys -- 4.2.5 Radio Synoptic Surveys -- 4.2.6 Other Wavelength Regimes -- 4.3 Toward the Petascale Data Streams and Beyond -- 4.4 Deep Field Surveys -- 4.5 Spectroscopic Surveys -- 4.6 Figures of Merit -- 5 From the Raw Data to Science-Ready Archives -- 5.1 Data Processing Pipelines -- 5.2 Source and Event Classification -- 5.3 Data Archives, Analysis, and Exploration -- 6 Concluding Comments -- Acknowledgments -- Appendix: A Partial List of Sky Surveys, Facilities, and Archives as of 2011 -- References -- 6 Techniques of RadioAstronomy -- 1 Introduction -- 1.1 A Selected List of Radio Astronomy Facilities -- 2 Radiative Transfer and Black Body Radiation -- 2.1 The Nyquist Theorem and Noise Temperature -- 2.2 Overview of Intensity, Flux Density, and Main Beam Brightness Temperature -- 2.3 Interstellar Dispersion and Polarization -- 3 Receiver Systems -- 3.1 Coherent and Incoherent Receivers -- 3.1.1 Receiver Calibration -- 3.1.2 Noise Uncertainties Due to Random Processes -- 3.1.3 Receiver Stability -- 4 Practical Aspects of Receivers -- 4.1 Bolometer Radiometers -- 4.2 Coherent Receivers -- 4.2.1 Noise Contributions in Coherent Receivers -- 4.2.2 Mixers -- 4.2.3 Square-Law Detectors -- 4.2.4 The Minimum Noise in a Coherent System -- 4.3 Back Ends -- 4.3.1 Polarimeters -- 4.3.2 Spectrometers -- 5 Antennas -- 5.1 The Hertz Dipole -- 5.2 Filled Apertures -- 5.2.1 Angular Resolution and Efficiencies. 327 $a5.2.2 Efficiencies for Compact Sources -- 5.2.3 Foci, Blockage, and Surface Accuracy -- 5.3 Single Dish Observational Techniques -- 5.3.1 The Earth's Atmosphere -- 5.3.2 Meter and Centimeter Calibration Procedures -- 5.3.3 Millimeter and Submillimeter Calibration Procedures -- 5.3.4 Bolometer Calibrations -- 5.3.5 Continuum Observing Strategies -- 5.3.6 Additional Requirements for Spectral Line Observations -- 5.3.7 Spectral Line Observing Strategies -- 6 Interferometers and Aperture Synthesis -- 6.1 Calibration -- 6.2 Responses of Interferometers -- 6.2.1 Time Delays and Bandwidth -- 6.2.2 Beam Narrowing -- 6.2.3 Source Size -- 6.3 Aperture Synthesis -- 6.3.1 Interferometric Observations -- 6.4 Interferometer Sensitivity -- 6.5 Corrections of Visibility Functions -- 6.5.1 Amplitude and Phase Closure -- 6.5.2 Calibrations, Gridding, FFTs, Weighting, and Self-Calibration -- 6.5.3 More Elaborate Improvements of Visibility Functions: The CLEANingProcedure -- 6.5.4 More Elaborate Improvements of Visibility Functions: The Maximum EntropyProcedure -- Acknowledgments -- References -- 7 Radio and OpticalInterferometry: BasicObserving Techniquesand Data Analysis -- 1 Interferometry in Astronomy -- 1.1 Introduction -- 1.2 Scientific Impact -- 2 Interferometry in Theory and Practice -- 2.1 Introduction -- 2.2 Interferometry in Theory -- 2.3 Interferometry in Practice -- 2.3.1 Quantum Limits of Amplifiers -- 2.4 Atmospheric Turbulence -- 2.4.1 Phase Fluctuations: Length Scale -- 2.4.2 Phase Fluctuations: Time Scale -- 2.4.3 Calibration: Isoplanatic Angle -- 3 Planning Interferometer Observations -- 3.1 Sensitivity -- 3.1.1 Radio Sensitivity -- 3.1.2 Visible and Infrared Sensitivity -- 3.1.3 Overcoming the Effects of the Atmosphere: Phase Referencing, AdaptiveOptics, and Fringe Tracking -- 3.2 (u,v) Coverage -- 3.3 Field-of-View. 327 $a3.4 Spectroscopic Capabilities. 330 $aThis is volume 2 of Planets, Stars and Stellar Systems, a six-volume compendium of modern astronomical research, covering subjects of key interest to the main fields of contemporary astronomy. This volume on ?Astronomical Techniques, Software, and Data? edited by Howard E. Bond presents accessible review chapters on Astronomical Photometry, Astronomical Spectroscopy, Infrared Astronomy Fundamentals, Astronomical Polarimetry: Polarized Views of Stars and Planets, Sky Surveys,Techniques of Radio Astronomy,Radio and Optical Interferometry: Basic Observing Techniques and Data Analysis, Absolute Calibration of Spectrophotometric Standard Stars,Virtual Observatories, Data Mining, and Astroinformatics, Statistical Methods for Astronomy, Numerical Techniques in Astrophysics . All chapters of the handbook were written by practicing professionals. They include sufficient background material and references to the current literature to allow readers to learn enough about a specialty within astronomy, astrophysics and cosmology to get started on their own practical research projects. In the spirit of the series Stars and Stellar Systems published by Chicago University Press in the 1960s and 1970s, each chapter of Planets, Stars and Stellar Systems can stand on its own as a fundamental review of its respective sub-discipline, and each volume can be used as a textbook or recommended reference work for advanced undergraduate or postgraduate courses. Advanced students and professional astronomers in their roles as both lecturers and researchers will welcome Planets, Stars and Stellar Systems as a comprehensive and pedagogical reference work on astronomy, astrophysics and cosmology. 606 $aObservations, Astronomical 606 $aAstronomy?Observations 606 $aMicrowaves 606 $aOptical engineering 606 $aStatistics  606 $aData mining 606 $aPhysics 606 $aAstronomy, Observations and Techniques$3https://scigraph.springernature.com/ontologies/product-market-codes/P22014 606 $aMicrowaves, RF and Optical Engineering$3https://scigraph.springernature.com/ontologies/product-market-codes/T24019 606 $aStatistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences$3https://scigraph.springernature.com/ontologies/product-market-codes/S17020 606 $aData Mining and Knowledge Discovery$3https://scigraph.springernature.com/ontologies/product-market-codes/I18030 606 $aNumerical and Computational Physics, Simulation$3https://scigraph.springernature.com/ontologies/product-market-codes/P19021 615 0$aObservations, Astronomical. 615 0$aAstronomy?Observations. 615 0$aMicrowaves. 615 0$aOptical engineering. 615 0$aStatistics . 615 0$aData mining. 615 0$aPhysics. 615 14$aAstronomy, Observations and Techniques. 615 24$aMicrowaves, RF and Optical Engineering. 615 24$aStatistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 615 24$aData Mining and Knowledge Discovery. 615 24$aNumerical and Computational Physics, Simulation. 676 $a520 702 $aBond$b Howard E$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910438119903321 996 $aPlanets, Stars and Stellar Systems$92039106 997 $aUNINA