Handbook of Agricultural Biotechnology, Volume 5 : Nanobiofertilizers
| Handbook of Agricultural Biotechnology, Volume 5 : Nanobiofertilizers |
| Autore | Adetunji Charles Oluwaseun |
| Edizione | [2nd ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (595 pages) |
| Altri autori (Persone) |
EgbunaChukwuebuka
FicaiAnton IjabadeniyiOluwatosin Ademola |
| Collana | Handbook of Agricultural Bionanobiotechnology Series |
| Soggetto topico |
Agricultural biotechnology
Nanobiotechnology |
| ISBN |
1-394-21154-6
1-394-21152-X 1-394-21153-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Application of Nanobiofertilization for Bioremediation and Ecorestoration of Polluted Soil/Farmland -- 1.1 Introduction -- 1.2 Nanoparticles -- 1.2.1 Nanoparticles as Nano-Adsorbents -- 1.2.2 Nanobiofertilizers -- 1.2.3 Biosynthesis of Nanoparticles -- 1.2.4 Microbe-Mediated Synthesis -- 1.2.5 Plant-Mediated Synthesis -- 1.3 Nanobiofertilization in Bioremediation -- 1.3.1 Mechanism of NPs-Microbes Interaction in Pollutant Bioremediation -- 1.3.2 Plant and Nanoparticle-Based Interaction Mechanism in Pollutant Bioremediation -- 1.4 Application of Nanobiofertilization in Bioremediation -- 1.4.1 Heavy Metals Removal -- 1.4.2 Removal of Hydrocarbon -- 1.4.3 Removal of Colored Dyes -- 1.4.4 Removal of Antiseptics and Antibiotics -- 1.4.5 Nano-Phytoremediation of Polluted Soils -- 1.4.6 Removal of Organic Pollutants -- 1.4.7 Removal of Heavy Metal -- 1.5 Environmental Distress -- 1.6 Conclusion -- References -- Chapter 2 Influence of Nanobiofertilizer on Plant Yield and Growth -- 2.1 Introduction -- Nanobiofertilizer -- Composition of Nanobiofertilizer -- Mechanisms of Nutrient Delivery and Enhanced Bioavailability -- Seed Priming (Nanopriming) -- Soil-Based Application -- Nanobiofertilizer Plant System Interaction -- Impact of Nanobiofertilizer on Plant Biomass -- Factors Contributing to Enhanced Plant Growth -- Comparison of Biomass Enhancement with Traditional Fertilizers -- Nanobiofertilizer-Induced Biomass and Chlorophyll Content Enhancement -- Crop-Specific Responses to Nanobiofertilizers -- Case Studies Highlighting Positive Outcomes on Various Crops -- Environmental and Economic Considerations on the Use of Nanobiofertilizers -- Comparison of Nanobiofertilizers with Traditional Fertilizers in Terms of Cost and Effectiveness.
Potential Long-Term Benefits for Soil Health and Ecosystem -- Addressing Concerns Related to Nanoparticle Toxicity and Accumulation -- Need for Standardized Testing Protocols and Safety Assessments -- Exploration of Innovative Nanobiofertilizer Formulations and Delivery Methods -- Strategies for Incorporating Nanobiofertilizers into Existing Farming Systems -- Synergistic Effects of Combining Nanobiofertilizers with Other Sustainable Practices -- Practical Considerations for Large-Scale Implementation -- Potential to Revolutionize Agriculture and Contribute to Food Security -- Call to Action for Continued Research, Development, and Adoption of Nanobiofertilizers -- Conclusion -- References -- Chapter 3 Effect of Bionanofertilizer on Proximate Composition of Crops -- 3.1 Introduction -- 3.2 Biological Synthesis of Nanofertilizers -- 3.2.1 Bacterial-Based Nanosynthesis -- 3.2.2 Fungal-Based Nanosynthesis -- 3.2.3 Algal-Based Nanosynthesis -- 3.2.4 Plant-Based Nanosynthesis -- 3.3 Composition of Bionanofertilizers -- 3.3.1 Macronutrient Bionanofertilizer -- 3.3.2 Micronutrient Bionanofertilizer -- 3.3.3 Hybrid Bionanofertilizers -- 3.4 Properties of Bionanofertilizers -- 3.4.1 Efficient Nutrient Release and Use -- 3.4.2 Maintenance of Equilibrium Between Nutrient Demand and Nutrient Supply -- 3.4.3 Enhancement of Soil Heterogeneity and Reduction of Environmental Pollution -- 3.4.4 Improvement of Soil Water Retention Capacity -- 3.5 Effect of Bionanofertilizers of Proximate Parameters of Crops -- 3.6 Conclusion and Future Direction -- References -- Chapter 4 The Role of Policy Maker, Relevant Stakeholders and Government Agency in Translating Nanobiofertilizer Research into Policy -- 4.1 Introduction -- 4.2 Views of the Dangers of Nanotechnology and Confidence in Stakeholders -- 4.3 Policy Making Process. 4.4 Benefits of Agencies in the Nanoproduction of Fertilizer -- 4.5 Relevant Stakeholders in the Implementation of Policy -- 4.6 Report of Nanobiofertilizers Worldwide -- 4.7 Government Agencies and Their Impact -- 4.8 Translating Research Into Policy -- 4.9 Global Safety and Legal Framework for Agricultural Goods Based on Nanotechnology -- 4.10 Future Initiatives and Studies to Support the Development of Nanobiofertilizers -- Conclusion -- References -- Chapter 5 Structural Elucidation, Detection, and Characterization of Essential Nutrients Necessary for Soil Fertilization -- 5.1 Introduction -- 5.1.1 Importance of Soil Fertility in Agriculture -- 5.1.2 Role of Essential Nutrients in Soil Fertilization -- 5.2 Nitrogen (N) in Soil Fertilization -- 5.2.1 Significance of Nitrogen for Plant Growth -- 5.2.2 Structural Elucidation of Nitrogen Compounds -- 5.3 Phosphorus (P) in Soil Fertilization -- 5.3.1 Importance of Phosphorus in Plant Growth -- 5.3.2 Structural Elucidation of Phosphorus Compounds -- 5.4 Potassium (K) in Soil Fertilization -- 5.4.1 Role of Potassium in Plant Nutrition -- 5.4.2 Characterization of Potassium in Soils -- 5.5 Optimization of Nutrient Management Strategies -- 5.5.1 Integration of Nutrient Detection and Characterization Data -- 5.5.2 Targeted and Efficient Fertilization Approaches -- Conclusion -- References -- Chapter 6 Effect of Nanobiofertilizer on Phytochemicals -- 6.1 General Overview on Nanobiofertilizer -- 6.2 Constituents of Nanobiofertilizer -- 6.2.1 Nanoparticles -- 6.2.1.1 Zinc Nanoparticles or ZnNPs -- 6.2.1.2 Silver Nanoparticles or AgNPS -- 6.2.1.3 Silicon Nanoparticles or SiNPs -- 6.2.1.4 Copper Nanoparticles or CuNPs -- 6.2.2 Biofertilizer -- 6.2.3 Preparation of Nanobiofertilizer -- 6.2 Concept of Nanobiofertilizers and Their Potential as a Sustainable Alternative to Conventional Fertilizers. 6.3 Importance of Phytochemicals in Plant Growth and Human Health -- 6.3.1 Phytochemical Research -- 6.4 Mechanisms of Nanobiofertilizer on Phytochemicals -- 6.4.1 Mechanism of Action of NFs -- 6.4.2 Mode of Application of NFs -- 6.4.3 Roots -- 6.5 Recent Studies on Effect of Nanobiofertilizer on Phytochemicals -- 6.6 Conclusion and Future Trends on Nanobiofertilizer on Phytochemicals -- References -- Chapter 7 Characterization of Nanoparticles Used as Nanobiofertilizers -- 7.1 Introduction -- 7.2 Some Spectroscopic Characterization Technique for Nanomaterials -- 7.2.1 X-Ray Diffraction (XRD) -- 7.2.2 Principle of X-Ray Diffraction (XRD) -- 7.2.3 Ultraviolet-Visible Spectroscopy (UV-vis) -- 7.2.4 Scanning Electron Microscopy (SEM) -- 7.2.5 Zeta Potential Measurements (ZPM) -- 7.2.6 Principle of Zeta Potential Measurements (ZPM) -- 7.2.7 Dital Polarimeter -- 7.2.8 Dynamic Light Scattering (DSL) -- 7.2.8.1 Principle of Dynamic Light Scattering (DSL) -- 7.2.9 Transform Infrared (FTIR) Spectroscopy -- 7.2.9.1 Principle of Transform Infrared (FTIR) Spectroscopy -- 7.3 Characterization of Nanobiofertilizer Through Chemical and Biological Synthesis -- 7.4 Application of Nanobiofertilizer -- 7.5 Environmental Impact Assessment -- 7.6 Future Perspectives and Challenges -- 7.6.1 Future Perspectives -- 7.6.2 Challenges -- 7.7 Conclusion -- References -- Chapter 8 Toxicological Effects of Nanobiofertilizer on Water Body, Water Quality, Lower Plants, Zooplanktons, and Beneficial Microorganisms -- 8.1 Introduction -- 8.2 Effects of Nanofertilizer on Soil Microbial Community -- 8.3 Nanofertilizers Versus Biofertilizers: Dissimilarity in Synthesis -- 8.4 Nanobiofertilizer -- 8.4.1 Toxicological Effects of Nanobiofertilizer on Water Body and Water Quality -- 8.4.2 Effects of Nanobiofertilizer on Lower Plants -- 8.4.3 Effects of Nanobiofertilizer on Zooplanktons. 8.4.4 Toxicological Effects of Nanobiofertilizer on Beneficial Microorganisms -- 8.5 Conclusion -- References -- Chapter 9 Various Techniques Used in the Application of Nanobiofertilizers on Crops After Synthesis -- 9.1 Introduction -- 9.2 Synthesis of Nanoparticles -- 9.2.1 Microbial Synthesis of Nanomaterials -- 9.2.2 Plant-Mediated Synthesis of Nanoparticles -- 9.3 Synthesis of Nanobiofertilizers -- 9.4 Methods Used in the Application of Nanobiofertilizers on Crops -- 9.4.1 Foliar Spraying -- 9.4.2 Seed Nanopriming -- 9.4.3 Soil Treatment -- 9.5 Conclusion -- References -- Chapter 10 Non-Target Effect, Environmental Impact, and Assessment of Nanobiofertilizer -- 10.1 Introduction -- 10.2 Environmental Impact of Nanobiofertilizer on Soil Properties -- 10.3 Non-Targeted Effects on Soil Properties -- 10.3.1 Physicochemical Properties of Soil -- 10.3.2 Biological Properties of Soil -- Soil Carbon and Carbon Sequestration -- Soil Respiration -- Soil Enzymes -- Soil Microorganisms and Microbial Diversity -- 10.4 Recommendation and Conclusion -- References -- Chapter 11 Reported Genes Regulating the Biological Activities in Microorganisms Used in the Formation of Nanobiofertilizers -- 11.1 Introduction -- 11.2 Synthesis of Nanoparticles -- 11.2.1 Biosynthesis of Nanoparticles -- 11.2.2 Microorganisms Used for the Synthesis of Nanobiofertilizers -- 11.3 Genes Regulating the Biological Activities in Plant Growth-Promoting Rhizobacteria -- 11.4 Conclusion -- References -- Chapter 12 Relevance of Molecular Genetics and Synthetic Biology Involved in the Characterization of Microorganisms Used in Nanofertilizer Research -- 12.1 Introduction -- 12.2 Molecular Genetics and Synthetic Biology -- 12.2.1 Molecular Genetics -- 12.2.2 Synthetic Biology -- 12.2.2.1 Synthetic Biology Tools for Engineering Nanobiofertilizer Microorganisms. 12.2.2.2 Case Studies on Use of Synthetic Biology to Enhance Microorganisms for Nanobiofertilizers. |
| Record Nr. | UNINA-9911019336203321 |
Adetunji Charles Oluwaseun
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Mushroom Biotechnology for Improved Agriculture and Human Health
| Mushroom Biotechnology for Improved Agriculture and Human Health |
| Autore | Adetunji Charles Oluwaseun |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2025 |
| Descrizione fisica | 1 online resource (397 pages) |
| Altri autori (Persone) |
EgbunaChukwuebuka
IjabadeniyiOluwatosin Ademola KarunarathnaSamantha C |
| ISBN |
9781394212675
1394212674 9781394212699 1394212690 9781394212682 1394212682 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Series Page -- Title Page -- Copyright page -- Contents -- Preface -- Chapter 1 Application of Mushrooms in the Bioremediation of Environmental Pollutants -- Introduction -- Unique Characteristics of Fungi -- Specific Contaminants Targeted by Mushrooms -- Mechanisms of Mushroom Bioremediation -- Absorption and Accumulation of Contaminants by Mushrooms -- Transformation and Degradation of Pollutants -- Role of Enzymes and Metabolic Processes -- Advancements and Research in Mushroom Bioremediation -- Emerging Trends in Fungal Bioremediation -- Genetic Modification of Mushrooms for Enhanced Bioremediation -- Benefits of Mushroom Bioremediation -- Challenges and Limitations of Using Mushrooms -- Future Prospects and Research Opportunities -- Conclusion and Recommendations -- References -- Chapter 2 Application of Mushroom in the Management of Pest and Diseases Affecting Agricultural Crops -- 2.1 Introduction -- 2.2 Properties of Mushroom as Biocontrol Agents (Basidiomycetes) -- 2.3 Mushroom Substrate as Biocontrol Agent for Plant -- 2.4 Mechanism of Action of Mushrooms in the Control of Pests and Diseases -- 2.5 Several Areas Where Mushrooms Can Be Applied -- 2.6 Mushrooms as Disease Control Agents -- 2.7 Conclusion -- References -- Chapter 3 Agricultural Applications of Novel Mushroom-Based Nanopesticide -- 3.1 Introduction -- 3.2 Advantages of Nanobiopesticides Over Conventional Pesticides -- 3.3 Mushrooms as Nanobiopesticide Sources -- 3.4 Bioactive Compounds in Mushrooms Suitable for Nanobiopesticide Development -- 3.5 Role of Mushroom Extracts in Nanoparticle Synthesis -- 3.6 Mechanisms of Action of Nanobiopesticides on Pests and Pathogens -- 3.7 Production and Formulation of Nanobiopesticides -- 3.8 Agricultural Applications of Nanobiopesticides -- 3.9 Future Prospects and Research Directions -- 3.10 Recommendation and Conclusion.
References -- Chapter 4 Mass Production of Mushroom for Animal Feed -- 4.1 Introduction -- 4.2 Mushroom -- 4.3 Mushroom Production -- 4.3.1 Mass Production of Mushrooms for Animal Feed -- 4.3.2 Mushroom Substrate (Spent) for Feed -- 4.3.3 Mushroom Substrate (Spent) for Poultry -- 4.3.4 Mushroom Substrate (Spent) for Ruminants -- 4.4 Benefits of Feeding Animals with Mushrooms -- 4.5 Conclusion -- References -- Chapter 5 Application of Mushrooms in Management of Soil-Borne Parasites, Nematodes, Bacteria and Fungi -- 5.1 Introduction -- 5.2 Soil-Borne Parasites, Nematodes, Bacteria, and Fungi -- 5.2.1 Soil-Borne Nematodes -- 5.2.2 Types of Soil-Borne Bacteria -- 5.2.3 Types of Soil-Borne Fungi -- 5.3 Mushrooms as Biocontrol Agents -- 5.3.1 Mushrooms as Natural Biopesticide -- 5.3.2 Mechanisms of Mushroom-Mediated Biocontrol -- 5.4 Mushroom Species and Biocontrol Potential -- 5.5 Advantages of Mushroom Biocontrol -- 5.6 Challenges and Limitations of Mushroom Bio-Control -- 5.7 Conclusion and Future Outlook -- References -- Chapter 6 Production of Stable Enzymes from Mushrooms with Numerous Biomedical Applications -- 6.1 Introduction -- 6.2 Classes/Types of Mushrooms -- 6.2.1 Button Mushroom (Agaricus bisporus) -- 6.2.2 Oyster (Pleurotus ostreatus) -- 6.2.3 Portabello -- 6.2.4 Morel (Morchella) -- 6.2.5 Reishi (Ganoderma lucidum) -- 6.2.6 Burnt Matches (Eutypellascorpia) -- 6.2.7 Chanterelle (Cantharellus) -- 6.2.8 Laetiporus sulphureus -- 6.2.9 Cordyceps (Cordyceps militaris) -- 6.2.10 Enokitake (Flammulina velutipes) -- 6.2.11 Giraffe Spots (Endophora albobadia) -- 6.2.12 Destroying Angel (Amanita sp.) -- 6.2.13 Green-Spored Lepiota (Chloropyhllum) -- 6.2.14 Matsutake Mushroom -- 6.2.15 Shiitake Mushroom (Lentinula edodes) -- 6.2.16 Truffles -- 6.2.17 Shimeji -- 6.3 Stable Enzymes Produced by Mushrooms -- 6.3.1 Ligninolytic Enzymes. 6.3.1.1 Lignin Peroxidase -- 6.3.1.2 Manganese Peroxidase -- 6.3.1.3 Versatile Peroxidase -- 6.3.1.4 Laccases -- 6.3.1.5 Tyrosinase -- 6.3.2 Hydrolases -- 6.3.2.1 Cellulases -- 6.3.2.2 Xylanase -- 6.3.2.3 Pectinases -- 6.3.2.4 Amylases -- 6.3.2.5 Proteases -- 6.3.2.6 Esterase -- 6.3.3 Stress Enzymes -- 6.4 Biomedical and Biotechnological Applications of Stable Mushroom Enzymes -- 6.4.1 Mushroom Enzymes as Antimicrobial Agents -- 6.4.2 Mushroom Enzymes as Anticancer and Antitumor Agents -- 6.4.3 Mushroom Enzymes as Antioxidants -- 6.4.4 Other Applications of Mushroom Enzymes -- 6.5 Some Limitations of Mushroom Enzymes -- 6.6 Conclusion and Future Perspectives -- References -- Chapter 7 Relevance of Mushrooms for Biological Control of Diverse Biotic Agent Mitigating Against Agricultural Crops -- 7.1 Introduction -- 7.1.1 Benefits of Using Mushrooms in Pest and Disease Management -- 7.1.2 Challenges of Mycopesticides -- 7.2 Fungal Biopesticides -- 7.2.1 How Fungal Biopesticides Work -- 7.2.2 Advantages of Fungal Biopesticides -- 7.2.3 Challenges and Considerations of Fungal Biopesticides -- 7.2.4 Some Key Points Regarding Fungal Biopesticides -- 7.3 Mycoparasitism -- 7.4 Nutrient Cycling and Soil Health -- 7.5 Companion Planting -- 7.6 Challenges and Considerations -- 7.7 Conclusion and Future Perspectives -- 7.7.1 Future Perspectives -- References -- Chapter 8 Discovery and Relevance of Novel Pharmacological Substances from Beneficial Mushrooms -- 8.1 Introduction -- 8.1.1 Brief Overview of Beneficial Mushrooms -- 8.1.2 Importance of Discovering Novel Pharmacological Substances in Mushrooms -- 8.1.3 Beneficial Mushrooms as a Source of Pharmacological Substances -- 8.1.4 Historical Use of Mushrooms in Traditional Medicine -- 8.2 Bioactive Compounds in Mushrooms -- 8.3 Pharmacological Activities of Mushroom-Derived Compounds. 8.4 Clinical Applications and Relevance -- 8.5 Challenges and Future Directions -- Conclusion -- References -- Chapter 9 Application of Mushroom in the Management of Diabetes Mellitus -- Introduction -- Pathophysiology of Diabetes Mellitus -- Mushroom and Its Biomolecules -- Mushroom and Health -- Therapeutic Potential of Mushroom in the Management of Diabetes Mellitus -- Conclusion -- References -- Chapter 10 Application of Mushrooms in the Management of Cardiovascular Diseases -- 10.1 Introduction -- 10.2 Selected Medicinal Mushrooms -- 10.2.1 Ganoderma lucidum -- 10.2.2 Hericium erinaceus (Lions Mane Mushroom) -- 10.2.3 Agaricus bisporus -- 10.3 Nutritional Composition of Mushrooms -- 10.4 Bioactive Compounds in Mushrooms -- 10.4.1 The Polysaccharide -- 10.4.2 Terpenoids -- 10.4.3 Steroids -- 10.4.4 Phenolics -- 10.4.5 Alkaloids -- 10.5 Cardioprotective Effect of Mushrooms -- 10.6 Conclusion -- References -- Chapter 11 Application of Mushroom in the Regulation of Gut Microbiome and Maintenance of Gut Health -- Introduction -- Gut Microbiome in Health and Disease -- Mushrooms and Their Derived Bioactive Molecules -- Health Benefits of Edible Mushroom Associated with Maintenance of Gut Health -- Conclusion -- References -- Chapter 12 Applications of Mushrooms in the Management of Cancers -- 12.1 Introduction -- 12.2 Cancer -- 12.2.1 Types of Cancer -- 12.3 Mushrooms -- 12.3.1 Major Bioactive Compounds in Medicinal Mushroom -- 12.3.1.1 Metabolites with a Substantial Molecular Weight -- 12.3.1.2 Metabolites with a Low Molecular Weight -- 12.3.1.3 Polyphenolic Compounds (Styrylpyrone-Class of Phenols) -- 12.3.2 Mechanisms by Which Certain Mushrooms Exhibit Anti-Cancer Effects -- 12.3.2.1 Immune Modulation -- 12.3.2.2 Angiogenesis -- 12.3.2.3 DNA Repair Inhibition -- 12.3.2.4 Apoptosis -- 12.3.2.5 Metastasis. 12.3.3 Some Mushrooms and Their Anti-Cancer Properties -- 12.3.3.1 Agaricus bisporus -- 12.3.3.2 Antrodia cinnamomea -- 12.3.3.3 Cordyceps sinensis -- 12.3.3.4 Coriolus versicolor -- 12.3.3.5 Ganoderma lucidum -- 12.3.3.6 Grifola frondosa (Maitake) -- 12.3.3.7 Lentinula edodes (Shitake) -- 12.3.3.8 Pleurotus ostreatus (Jacq.) -- 12.3.4 Exploring Novel Mushroom-Derived Therapies for Cancer -- 12.3.4.1 Vaccinotherapy -- 12.3.4.2 Nanovectors for Drug Delivery -- 12.4 Conclusion -- References -- Chapter 13 Applications of Mushrooms as Immune Boosters -- 13.1 Introduction -- 13.2 Mushroom Composites -- 13.3 ß-Glucans and Their Nutritional Components -- 13.4 Antiproliferative and Other Human Health Reactions of Medicinal Mushrooms -- Conclusion -- References -- Chapter 14 The Influence of Mushroom on the Taphonomic Process of Cadaver -- 14.1 Introduction -- 14.2 Mushroom and the Fungus Phylogeny -- 14.3 Mushroom Taphonomic Process -- 14.4 Influence of Mushroom on Cadaver Taphonomy -- 14.5 Conclusion -- References -- Chapter 15 Role of Nanobiopesticides Derived from Mushrooms: Recent Advances -- 15.1 Introduction -- 15.2 Environmental and Health Concerns with Chemical Pesticides -- 15.3 Mushrooms as a Source of Bioactive Compounds -- 15.4 Antimicrobial and Insecticidal Properties of Mushrooms -- 15.4.1 Antimicrobial Properties -- 15.4.2 Antiparasitic Activity -- 15.5 Nanotechnology and its Applications in Agriculture -- 15.6 Mechanisms of Action of Nanobiopesticides -- 15.7 Benefits and Advantages of Nanobiopesticides -- 15.8 Conclusion and Future Perspectives -- 15.8.1 Conclusion -- 15.8.2 Future Perspectives -- References -- Chapter 16 Nutraceutical, Mineral, Proximate Constituents from Beneficial Mushrooms -- 16.1 Introduction -- 16.2 Nutraceutical Constituents of Mushrooms -- 16.3 Mineral Constituents of Mushrooms. 16.4 Proximate Constituents of Mushrooms. |
| Record Nr. | UNINA-9911018954503321 |
Adetunji Charles Oluwaseun
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Nanochitosan Applications for Enhanced Crop Production and Food Security
| Nanochitosan Applications for Enhanced Crop Production and Food Security |
| Autore | Adetunji Charles Oluwaseun |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2025 |
| Descrizione fisica | 1 online resource (441 pages) |
| Altri autori (Persone) |
ShahMaulin P
BelloYerima Mohammed HefftDaniel Ingo SinghJay PandeyShyam S Pratap SinghRavindra |
| ISBN |
9781394214891
1394214898 9781394214945 1394214944 9781394214938 1394214936 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 The Role of Nanomaterials in Agriculture as Nanofertilizers -- 1.1 Introduction -- 1.2 Nanotechnology in Agriculture -- 1.3 Nanomaterials -- 1.3.1 Nanoparticles -- 1.3.1.1 Properties of Nanoparticles -- 1.3.1.2 Synthesis of Nanoparticles -- 1.3.2 Application of Nanotechnology in Agriculture -- 1.3.2.1 Application of Nanotechnology in Precision Farming -- 1.3.2.2 Nanosensors -- 1.3.2.3 Nanotechnology in Water Management -- 1.3.2.4 Biosensors to Detect Nutrients and Contaminants -- 1.3.2.5 Nanotechnology to Improve Quality of Soil and Fertilizer Distribution -- 1.3.2.6 Nanotechnology to Control Plant Diseases -- 1.3.2.7 Nanofertilizers -- 1.3.2.8 Nanostructured Formulation Reduce Nutrients Loss Into Soil by Leaching -- 1.3.2.9 Application of Nanotechnology in Seed Science -- 1.4 Nanofertilizers -- 1.4.1 Types of Nanofertilizers -- 1.4.2 Uptake and Accumulation Mechanisms of Nanofertilizers from Soil to Plants -- 1.4.3 Synthesis of Nanofertilizers -- 1.4.4 Characterization of Nanofertilizers -- 1.4.5 Advantages of Nanofertilizers -- 1.4.6 Limitations of Nanofertilizers -- 1.5 Conclusion -- References -- Chapter 2 Synthesis of Nano-Chitosan Using Agricultural Waste -- 2.1 Introduction -- 2.2 Different Sources of Agricultural Waste -- 2.2.1 Shell Wastes -- 2.2.2 Livestock Wastes -- 2.2.3 Crop Residues -- 2.2.4 Agricultural Industry Wastes -- 2.2.5 Nanomaterial Synthesis Using Agro-Waste -- 2.2.6 Chitin -- 2.2.7 Chitosan Nanoparticles -- 2.2.8 Properties of Nano-Chitosan -- 2.3 Synthesis of Nano-Chitosan -- 2.3.1 Nano-Precipitation -- 2.3.2 Drying Through Spraying -- 2.3.3 The Gelation Ionotropic Technique -- 2.3.4 Droplet Emulsion Coalescence and Solvent Emulsion Diffusion -- 2.3.5 Reverse Micelles -- 2.3.6 Polyelectrolyte Complex (PEC).
2.3.7 Biological Synthesis -- 2.3.8 Biogenic Synthesis of Nano-Chitosan Over Other Nanoparticles -- 2.3.9 Chitosan Nanoparticle Characterization -- 2.3.10 Nano-Chitosan Applications -- 2.3.10.1 In Agriculture -- 2.3.10.2 Biomedicals -- 2.3.10.3 Industry -- 2.4 Conclusion -- References -- Chapter 3 Reduction of Agricultural Greenhouse Gas Emissions by Nanochitosan -- 3.1 Introduction -- 3.2 Types of Greenhouse Gases Emitted in Agriculture -- 3.3 Environmental and Economic Consequences of Greenhouse Gases -- 3.4 Nanochitosan as a Potential Mitigation Strategy -- 3.5 Mechanisms of Action for Emission Reduction -- 3.6 Crop Yield and Quality -- 3.6.1 Collaborative Stakeholder Engagement -- 3.6.2 Promoting Sustainable Farming Practices -- 3.7 Limitations and Future Research Directions -- 3.8 Conclusion and Recommendations -- References -- Chapter 4 The Application of Nanochitosan Biopesticides as a Replacement to Synthetic Pesticides -- 4.1 Introduction -- 4.2 Nanochitosan -- 4.2.1 Properties of Nanochitosan -- 4.2.2 Synthesis of Nanochitosan -- 4.2.2.1 Emulsion Cross-Linking -- 4.2.2.2 Reverse Micellar Method -- 4.2.2.3 Precipitation Method -- 4.2.2.4 Ionic Gelation -- 4.2.3 Preparation of Nanochitosan -- 4.2.4 Application of Nanochitosan in Agriculture -- 4.3 Efficacy of Nanochitosan Compared to Synthetic Pesticides -- 4.3.1 Nanochitosan's Mechanism of Action Against the Pathogens -- 4.3.2 Bioactivity of Nanochitosan as a Biopesticide -- 4.3.3 Environmental Benefits of Nanochitosan -- 4.4 Challenges and Future Prospects for the Use of Chitosan Nanoparticles as Biopesticides -- 4.5 Conclusion -- 4.6 Recommendations -- References -- Chapter 5 The Use of Nanochitosan for Enhancement in the Quality and Yield of Fruit Crops -- 5.1 Introduction -- 5.2 Chitosan -- 5.3 The Impact of Chitosan NPs on the Growth and Yields of Some Fruit Crops -- 5.3.1 Cucumber. 5.3.2 Tomato -- 5.3.3 Mango -- 5.3.4 Orange -- 5.4 Application of Chitosan Nanoparticles (ChNPs) -- 5.4.1 In Agriculture -- 5.4.2 Plant Growth Enhancement and Increased Productivity -- 5.4.3 Biocides Against Plant Pathogens and Pests -- 5.5 Other Potential Use of Nanochitosan for Enhancing Fruit Crops -- 5.5.1 Enhanced Disease Resistance -- 5.5.2 Improved Nutrient Absorption -- 5.5.3 Stress Tolerance -- 5.5.4 Post-Harvest Preservation -- 5.5.5 Environmental Impact -- 5.6 Conclusion -- References -- Chapter 6 Application of Nanochitosan for Effective Fruit Production -- 6.1 Introduction -- 6.2 Mechanism of Action -- 6.3 Fruits -- 6.3.1 Economic Importance of Fruits -- 6.3.2 Nanochitosan in Fruits and Fruit Production -- 6.4 Guidelines in Effective Application of Nanochitosan -- 6.5 Application of Nanochitosan for Different Fruits -- 6.6 Conclusion -- References -- Chapter 7 Application of Nanochitosan in the Detection of Mycotoxins -- 7.1 Introduction -- 7.2 Nanochitosan -- 7.2.1 Preparation Methods of Nanochitosan -- 7.2.1.1 Ionotropic Gelation Method -- 7.2.1.2 Emulsification and Crosslinking Method -- 7.2.1.3 Reverse Micellar Method -- 7.2.1.4 Precipitation-Based Methods -- 7.2.2 Nanochitosan-Based Sensors for Mycotoxin Detection -- 7.2.2.1 Surface Plasmon Resonance Technique -- 7.2.2.2 Colorimetric Assay -- 7.2.2.3 Chitosan-Based Electrochemical Sensors -- 7.3 Advantages of Nanochitosan -- 7.3.1 Disadvantages of Nanochitosan -- 7.3.2 Factors That Affect Nanochitosan Formation -- 7.3.2.1 Molecular Weight and Degree of Deacetylation -- 7.3.2.2 pH -- 7.3.2.3 Temperature -- 7.3.2.4 Crosslinker -- 7.4 Conclusion -- 7.5 Recommendations -- References -- Chapter 8 Application of Nanochitosan in Food Packaging Sectors -- 8.1 The Evolution of Food Packaging -- 8.2 Standard Food Packaging -- 8.3 Types of Food Packaging -- 8.3.1 Primary Packaging. 8.3.2 Secondary Packaging -- 8.3.3 Tertiary Packaging -- 8.4 Environmental Impacts of Food Packaging -- 8.5 Significance of Food Packaging -- 8.6 Current Challenges in the Field of Food Packaging and Sustainability -- 8.7 Current Scenario of Nanotechnology Application in Food Packaging -- 8.8 Different Nanoparticles in Food Packaging Applications -- 8.8.1 Inorganic Nanoparticles in Food Packaging -- 8.8.2 Organic Nanoparticles in Food Packaging -- 8.8.2.1 Chitosan -- 8.8.2.2 Nanochitosan as a Food Packing Material -- 8.9 Preparation of Chitosan Nanoparticles -- 8.9.1 Ionic Gelation Method -- 8.9.2 Reverse Micellar Method -- 8.9.3 Nano-Based Food Packaging Methods -- 8.9.3.1 Active Packaging -- 8.9.3.2 Smart Packaging -- 8.9.3.3 Intelligent Packaging -- 8.9.4 Food Application of Chitosan -- 8.9.4.1 Edible Coating or Film -- 8.9.4.2 Bread -- 8.9.4.3 Egg -- 8.9.4.4 Vegetables and Fruits -- 8.9.4.5 Juice -- 8.9.4.6 Meat -- 8.9.4.7 Milk -- 8.9.4.8 Noodles -- 8.9.4.9 Rice Cake -- 8.9.4.10 Sausage -- 8.9.4.11 Seafoods and Seafood Products -- 8.9.4.12 Soybean Curd (Tofu) -- 8.9.4.13 Vinegar -- 8.9.5 Other Applications of Chitosan Nanoparticles -- 8.9.5.1 Medicine and Pharmaceuticals -- 8.9.5.2 Wastewater Treatment -- 8.10 Advantages of Nanotechnology in Food Packaging -- 8.10.1 Nanoparticles Protect Food Quality Decay Caused by Chemicals -- 8.10.2 Nanoparticles for Enhancing Physical Properties -- 8.10.3 Nanoparticles for the Detection of Food Borne Pathogens -- 8.10.4 Nanoparticles for Inhibiting Biofilm Formation -- 8.10.5 Eco-Friendly -- 8.11 Conclusion -- References -- Chapter 9 Application of Nanochitosan as Food Additive and Preservatives -- 9.1 Introduction -- 9.2 Importance of Food Additives and Preservatives in the Food Industry -- 9.3 Transition to the Application of Nanochitosan in Food Preservation -- 9.4 Physicochemical Properties of Chitosan. 9.4.1 Solubility -- 9.4.2 Molecular Weight -- 9.4.3 Degree of Deacetylation -- 9.4.4 Viscosity -- 9.5 Mechanisms of Food Spoilage and Preservation -- 9.6 Application of Nanochitosan as Food Additives -- 9.6.1 Nanochitosan as a Preservative Agent -- 9.7 Safety and Regulatory Considerations for Nanochitosan -- 9.8 Case Studies and Practical Applications of Nanochitosan -- 9.9 Future Prospects and Challenges -- 9.10 Conclusion -- References -- Chapter 10 Applications of Chitosan Nanocomposites in Packaging of Food Products -- 10.1 Introduction -- 10.2 The Chitosan Antimicrobial Potential -- 10.3 Chitosan Composites for Food Applications -- 10.3.1 Chitosan Enhanced with Nano-Sized Metals -- 10.3.1.1 Nano-Sized Zinc Oxide Particles (ZNPs) -- 10.3.1.2 Titanium Dioxide Nanoparticles (TNPs) -- 10.3.1.3 Silver Nanoparticles (AgNPs) -- 10.3.1.4 Silicon Dioxide and Silica Nanoparticles -- 10.3.1.5 Copper Nanoparticles (CuNPs) -- 10.3.1.6 Magnesium Nanoparticles (MgNPs) -- 10.3.1.7 Sulfur Nanoparticles (SNPs) -- 10.3.1.8 Chitosan Enhanced with Carbon -- 10.3.2 Polysaccharide-Chitosan Composite -- 10.3.3 Essential Oil-Chitosan-Based Composite for Food Applications -- 10.3.4 Gelatin-Chitosan-Based Composite for Food Packaging Applications -- 10.3.4.1 Application of Gelatin-Based Composites for Packaging Various Food Items -- 10.3.5 Clay-Chitosan-Based Composite for Food Packaging -- 10.3.5.1 Food Packaging-Related Applications of Chitosan-Clay Nanocomposites -- 10.3.6 Polyphenolics-Chitosan-Based Composite for Food Packaging -- 10.3.7 Polyvinyl Alcohol-Chitosan-Based Composite for Food Packaging -- 10.4 Conclusion -- References -- Chapter 11 Application of Nanochitosan as Biofertilizers for Sustainable Agriculture -- 11.1 Introduction to Nanoparticle and Chitosan -- 11.2 Nanofertilizers -- 11.2.1 Types of Nanofertilizers. 11.2.1.1 Classification Based on Their Modes of Action. |
| Record Nr. | UNINA-9911020330303321 |
Adetunji Charles Oluwaseun
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||