| Autore |
Chakroborty Subhendu
|
| Edizione | [1st ed.] |
| Pubbl/distr/stampa |
John Wiley & Sons, Inc, 2024
|
| Descrizione fisica |
1 online resource (514 pages)
|
| Disciplina |
620.112
|
| Altri autori (Persone) |
PalKaushik
|
| Soggetto topico |
Nanostructured materials
Nanotechnology
|
| ISBN |
9781394167876
1394167873
9781394167883
1394167881
|
| Formato |
Materiale a stampa  |
| Livello bibliografico |
Monografia |
| Lingua di pubblicazione |
eng
|
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part I: Synthesis of 2D Nanomaterials -- Chapter 1 Top-Down Strategies Synthesis of 2D Nanomaterial -- 1.1 Introduction -- 1.2 Top-Down Strategy Synthesis Method -- 1.2.1 Etching -- 1.2.2 Mechanical Milling -- 1.2.3 Sputtering -- 1.3 Laser Ablation -- 1.4 Characterizations and Toxicity of 2D Nanomaterials -- 1.5 Conclusions -- References -- Chapter 2 Bottom-Up Strategies for Synthesis of 2D Nanomaterial -- 2.1 Introduction -- 2.2 Types of 2D Nanomaterial -- 2.2.1 Graphene -- 2.2.2 MXenes -- 2.2.3 Black Phosphorus -- 2.2.4 Hexagonal Boron Nitride -- 2.2.5 Transition Metal Dichalcogenides -- 2.2.6 Graphitic Carbon Nitride -- 2.2.7 MOF and COF -- 2.3 Synthesis Strategies -- 2.3.1 Top-Down -- 2.3.1.1 Mechanical Milling -- 2.3.1.2 Electrospinning -- 2.3.1.3 Lithography -- 2.3.1.4 Sputtering -- 2.3.1.5 The Arc Discharge Method -- 2.3.1.6 Laser Ablation -- 2.3.2 Bottom-Up Method -- 2.3.2.1 Chemical Vapor Deposition -- 2.3.2.2 Sol-Gel Method -- 2.3.2.3 Solvothermal and Hydrothermal Methods -- 2.3.2.4 Soft and Hard Template and Reverse Micelle Methods -- 2.4 Bottom-Up Strategies for Synthesis of 2D Nanomaterial -- 2.5 Conclusion and Outlook -- References -- Chapter 3 Unveiling the Intricacies: Characterization Techniques for 2D Nanomaterials -- 3.1 Introduction -- 3.2 Characterization Techniques -- 3.2.1 XRD -- 3.2.2 SEM and TEM -- 3.2.3 Optical Microscope -- 3.2.4 AFM -- 3.2.5 XPS -- 3.2.6 RAMAN -- 3.3 Conclusion -- References -- Part II: Properties of 2D Nanomaterials -- Chapter 4 Crystal Structure, Magnetic and Mechanical Properties of 2D Nanomaterials -- 4.1 Introduction -- 4.2 Structure of 2D Materials -- 4.2.1 Graphene -- 4.2.2 Black Phosphorous -- 4.2.3 Transition Metal Dichalcogenide (TMDC) -- 4.3 Magnetic 2D Materials -- 4.4 Origin of Magnetization in 2D Materials.
4.5 Mechanical Properties of 2D Nanomaterials -- 4.6 Conclusion -- References -- Chapter 5 Electrical, Plasmonic, and Optical Properties of 2D Nanomaterials -- 5.1 Introduction -- 5.2 Overview of Two-Dimensional Nanomaterials (2D NMs) -- 5.3 Electrical Properties of 2D NMs -- 5.4 Optical Properties of 2D NMs -- 5.5 Plasmonic Properties of 2D NMs -- 5.6 Recent Applications of 2D NMs -- 5.6.1 2D NMs for BioMedical Application -- 5.6.2 2D NMs in the Field of Energy -- 5.6.3 2D NMs as Lubricant Additive -- 5.7 Challenges and Prospective -- 5.8 Conclusion -- Acknowledgments -- References -- Part III: Application of 2D Nanomaterials -- Chapter 6 Challenges Surrounding 2D Nanomaterials and Their Application to Photocatalytic Industrial Wastewater Treatment -- 6.1 Introduction -- 6.2 Photocatalysis for Industrial Wastewater Treatment -- 6.2.1 Principles of Photocatalysis -- 6.2.2 Photocatalytic Processes for Industrial Wastewater Treatment -- 6.2.3 Advantages and Limitations of Photocatalysis -- 6.3 2D Nanomaterials in Photocatalysis -- 6.3.1 Introduction to 2D Nanomaterials and Types Used in Photocatalysis -- 6.3.2 Key Properties and Characteristics of 2D Nanomaterials -- 6.3.3 Role of 2D Nanomaterials in Enhancing Photocatalytic Performance -- 6.4 Challenges in Utilizing 2D Nanomaterials for Photocatalytic Wastewater Treatment -- 6.4.1 Synthesis and Fabrication Challenges -- 6.4.2 Stability and Degradation Issues -- 6.4.3 Efficiency and Selectivity Considerations -- 6.4.4 Scalability and Cost-Effectiveness Challenges -- 6.5 Strategies to Overcome Challenges -- 6.5.1 Improvement of Synthesis and Fabrication Techniques -- 6.5.2 Enhancement of Stability and Durability -- 6.5.3 Optimization of Photocatalytic Performance -- 6.5.4 Economical and Scalable Production Methods -- 6.6 Case Studies and Applications.
6.6.1 Examples of Successful Applications of 2D Nanomaterials -- 6.6.2 Case Studies in Photocatalytic Industrial Wastewater Treatment -- 6.6.3 Lessons Learned and Future Prospects -- 6.7 Conclusion -- References -- Chapter 7 Application of 2D Nanomaterials for Energy Storage -- 7.1 Introduction -- 7.2 2D Nanomaterials for Application of Lithium Ion Batteries -- 7.3 Application of 2D Nanomaterials in Sodium Ion Batteries -- 7.4 Application of 2D Nanomaterials in Potassium Ion Batteries -- 7.5 Applications of 2D Nanomaterials in Supercapacitors -- Conclusions -- References -- Chapter 8 Innovation in Photoinduced Antibacterial 2D Nanomaterials -- 8.1 Introduction -- 8.2 Antibacterial Applications Based on Graphene-Induced Photostimulation -- 8.2.1 Nanomaterials for Antibacterial Transition-Metal Dichalcogenides/Oxides -- 8.2.2 Antibacterial Nanomaterials Based on Carbon Nitride -- 8.2.3 Antibacterial Nanomaterials Based on Black Phosphorus -- 8.2.4 Other 2D Antibacterial Nanomaterials -- 8.3 Antibacterial Mechanisms of Graphene-Based Family -- 8.3.1 Physical Contact Destruction -- 8.3.2 Oxidative Stress -- 8.3.3 Disruption of Bacterial Protein Interactions -- 8.3.4 Photo-Induced Mechanisms -- 8.4 Conclusion -- References -- Chapter 9 2D Nanomaterials for Drug Delivery System -- 9.1 Introduction -- 9.2 2D Material Biosynthesis -- 9.3 Encapsulation of 2D Materials -- 9.4 Hydrogel Encapsulation-2D Materials -- 9.5 2D Material Encapsulation-Liposomes -- 9.6 2D Supply Encapsulation-Micelle -- 9.7 Stimuli Responsive 2D Material SDDSs-Classification -- 9.8 Light-Sensitive SDDSs -- 9.9 Magnetic Field-Responsive SDDSs -- 9.10 Various Response Exhibits Diverse-Advantages/Disadvantages -- 9.11 2D Material SDDS Therapy-Cancer -- 9.12 Antibacterial -- 9.12.1 Central Nervous System -- 9.13 Orthopedic -- 9.14 Diabetes Mellitus.
9.15 2D Materials in Intelligent Drug Delivery System-Advantages -- 9.16 Disadvantages -- 9.17 Conclusion and Future Perspective -- Acknowledgements -- References -- Chapter 10 New Technology 2D Nanomaterials for Neural Tissue Engineering -- 10.1 Introduction -- 10.2 Regeneration of Tissue and Organ Repair in Nature -- 10.2.1 The 'Curious Case' of Lizard: A Nature's Classic -- 10.2.2 Regenerative Capabilities of Amphibians -- 10.2.3 Regeneration in Humans -- 10.3 Nanotechnology and Neural Tissue Engineering -- 10.3.1 Definition of Nanotechnology -- 10.3.2 Synthesis of Nanomaterials or Nanoparticles -- 10.4 2D Nanomaterials for Tissue Engineering Application -- 10.4.1 Graphene-Based Nanomaterials in Tissue Engineering -- 10.4.2 Black-Phosphorus (BP)-Based Nanosheets in Tissue Engineering -- 10.4.3 Application of 2D Nanoclay in Tissue Engineering -- 10.5 2D Nanomaterials and Peripheral Nerve Engineering -- 10.5.1 Peripheral Nerve -- 10.5.2 Damage and Regeneration in Peripheral Nerve -- 10.5.3 Key Features of Nanomaterials in Neural Tissue Engineering -- 10.5.4 Mechanism of 2D Nanomaterial-Based Neural Regeneration -- 10.5.4.1 Graphene -- 10.5.4.2 Graphene Oxide -- 10.5.4.3 Black Phosphorus (BP) -- 10.6 Application of 2D Nanomaterials in Spinal Cord Repair -- 10.7 2D Nanomaterials for Drug/Gene Delivery -- 10.8 Challenges and Prospects -- References -- Chapter 11 Theranostic Approach of 2D Nanomaterials in Breast Cancer -- 11.1 Introduction -- 11.2 Applications -- Conclusion -- Acknowledgments -- References -- Chapter 12 2D Nanomaterials for Photocatalytic Hydrogen Production -- 12.1 Introduction -- 12.2 Basics of Photocatalytic Hydrogen Production -- 12.3 2D Nanomaterials for Photocatalytic Hydrogen Production -- 12.3.1 Graphene-Based -- 12.3.2 Carbon Nitrides -- 12.3.3 Transition Metal Dichalcogenides -- 12.3.4 MXene.
12.4 Enhancing the Photocatalytic Performance -- 12.5 Conclusion and Outlook -- Acknowledgments -- References -- Chapter 13 Supercapacitor Based on 2D Nanomaterials and Their Hybrid -- 13.1 Introduction -- 13.2 Structure Design of 2D Nanomaterial-Based Supercapacitors -- 13.3 2D Nanomaterials for Supercapacitor Technology -- 13.3.a Transition Metal Oxides (TMOs) and Transition Metal Hydroxides (TMHs)-Based Supercapacitor -- 13.3.a.1 Transition Metal Oxides -- 13.3.a.2 Transition Metal Hydroxides -- 13.3.b Transition Metal Carbide/Carbonitride (MXene)-Based Supercapacitor -- 13.3.c Transition Metal Dichalcogenide (TMD)-Based Supercapacitor -- 13.3.d Black Phosphorous-Based Supercapacitor -- 13.4 Conclusions -- References -- Chapter 14 2D Nanomaterials Based for Electrocatalytic Application -- 14.1 Introduction -- 14.1.1 Introduction to 2D Nanomaterials and Their Unique Properties -- 14.1.2 Motivation for Utilizing 2D Nanomaterials in Electrocatalytic Applications -- 14.2 Types of 2D Nanomaterials -- 14.2.1 Graphene -- 14.2.2 Dichalcogenides (TMDs) -- 14.2.3 Brief Overview of Their Structures and Properties -- 14.3 Electrocatalytic Reactions Enabled by 2D Nanomaterials -- 14.3.1 Oxygen Reduction Reaction (ORR) -- 14.3.2 Hydrogen Evolution Reaction (HER) -- 14.3.3 Carbon Dioxide Reduction Reaction (CO2RR) -- 14.3.4 Synthesis and Characterization Techniques -- 14.3.4.1 Synthesis Methods for 2D Nanomaterials -- 14.3.4.2 Characterization Techniques for 2D Nanomaterials -- 14.3.4.3 Relationship Between Synthesis, Structure, and Electrocatalytic Performance -- 14.4 Challenges and Future Perspectives -- 14.4.1 Current Challenges in Utilizing 2D Nanomaterials for Electrocatalytic Applications -- 14.4.2 Potential Strategies to Overcome These Challenges -- 14.4.3 Future Directions and Emerging Trends in the Field -- 14.5 Conclusion -- References.
Chapter 15 Engineering 2D Nanomaterials for Biomedical Applications.
|
| Record Nr. | UNINA-9911020041803321 |