(Almost) Impossible Integrals, Sums, and Series / / by Cornel Ioan Vălean |
Autore | Vălean Cornel Ioan |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (XXXVIII, 539 p.) |
Disciplina | 515.43 |
Collana | Problem Books in Mathematics |
Soggetto topico |
Sequences (Mathematics)
Special functions Number theory Functions of real variables Physics Engineering mathematics Sequences, Series, Summability Special Functions Number Theory Real Functions Mathematical Methods in Physics Engineering Mathematics |
ISBN | 3-030-02462-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910338246703321 |
Vălean Cornel Ioan | ||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
500 Examples and Problems of Applied Differential Equations / / by Ravi P. Agarwal, Simona Hodis, Donal O’Regan |
Autore | Agarwal Ravi P |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (IX, 388 p. 84 illus., 3 illus. in color.) |
Disciplina | 515.35 |
Collana | Problem Books in Mathematics |
Soggetto topico |
Differential equations
Difference equations Functional equations Partial differential equations Sequences (Mathematics) Numerical analysis Ordinary Differential Equations Difference and Functional Equations Partial Differential Equations Sequences, Series, Summability Numerical Analysis |
ISBN | 3-030-26384-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1. First Order Linear Differential Equations -- 2. Some First Order Nonlinear Differential Equations -- 3. Second and Higher Order Differential Equations -- 4. Power Series Solutions -- 5. Systems of First Order Linear Differential Equations -- 6. Runge–Kutta Method -- 7. Stability Theory -- 8. Linear Boundary Value Problems -- 9. Nonlinear Boundary Value Problems -- Index. |
Record Nr. | UNINA-9910349335203321 |
Agarwal Ravi P | ||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced Calculus : A Differential Forms Approach / / by Harold M. Edwards |
Autore | Edwards Harold M |
Edizione | [1st ed. 2014.] |
Pubbl/distr/stampa | Boston, MA : , : Birkhäuser Boston : , : Imprint : Birkhäuser, , 2014 |
Descrizione fisica | 1 online resource (XIX, 508 p. 102 illus.) : online resource |
Disciplina | 515 |
Collana | Modern Birkhäuser Classics |
Soggetto topico |
Mathematical analysis
Analysis (Mathematics) Functional analysis Functions of real variables Sequences (Mathematics) Analysis Functional Analysis Real Functions Sequences, Series, Summability |
ISBN | 0-8176-8412-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Constant Forms -- Integrals -- Integration and Differentiation -- Linear Algebra -- Differential Calculus -- Integral Calculus -- Practical Methods of Solution -- Applications -- Further Study of Limits -- Appendices -- Answers to Exercises -- Index. |
Record Nr. | UNINA-9910299974703321 |
Edwards Harold M | ||
Boston, MA : , : Birkhäuser Boston : , : Imprint : Birkhäuser, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in Computer Algebra : In Honour of Sergei Abramov's' 70th Birthday, WWCA 2016, Waterloo, Ontario, Canada / / edited by Carsten Schneider, Eugene Zima |
Edizione | [1st ed. 2018.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
Descrizione fisica | 1 online resource (xi, 280 pages) : illustrations |
Disciplina | 004.0151 |
Collana | Springer Proceedings in Mathematics & Statistics |
Soggetto topico |
Difference equations
Functional equations Sequences (Mathematics) Special functions Computer software Computer science—Mathematics Mathematical physics Difference and Functional Equations Sequences, Series, Summability Special Functions Mathematical Software Mathematics of Computing Theoretical, Mathematical and Computational Physics |
ISBN | 3-319-73232-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Sergei A. Abramov and Moulay A. Barkatou, On Strongly Non-Singular Polynomial Matrices -- Moulay Barkatou, Thomas Cluzeau and Carole El Bacha, On the Computation of Simple Forms and Regular Solutions of Linear Difference Systems -- Johannes Blumlein, Mark Round and Carsten Schneider, Refined Holonomic Summation Algorithms in Particle Physics -- Shaoshi Chen, Bivariate Extensions of Abramov’s Algorithm for Rational Summation -- Hao Du, Hui Huang and Ziming Li, A q-Analogue of the Modified Abramov-Petkovsek Reduction -- Manuel Kauers and Doron Zeilberger, Factorization of C-finite Sequences -- Johannes Middeke and Carsten Schneider, Denominator Bounds for Systems of Recurrence Equations using ΠΣ-Extensions -- Evans Doe Ocansey and Carsten Schneider, Representing (q–)Hypergeometric Products and Mixed Versions in Difference Rings -- Anton A. Panferov, Linearly Satellite Unknowns in Linear Differential Systems -- Peter Paule and Silviu Radu, Rogers-Ramanujan Functions, Modular Functions, and Computer Algebra. |
Record Nr. | UNINA-9910300118903321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in Summability and Approximation Theory / / edited by S. A. Mohiuddine, Tuncer Acar |
Edizione | [1st ed. 2018.] |
Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2018 |
Descrizione fisica | 1 online resource (XIII, 241 p. 10 illus., 9 illus. in color.) |
Disciplina | 515.24 |
Soggetto topico |
Sequences (Mathematics)
Approximation theory Functional analysis Sequences, Series, Summability Approximations and Expansions Functional Analysis |
ISBN | 981-13-3077-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1. A Survey for Paranormed Sequence Spaces Generated by Infinite Matrices -- Chapter 2. Tauberian Conditions under which Convergence Follows from Statistical Summability by Weighted Means -- Chapter 3. Applications of Fixed Point Theorems and General Convergence in Orthogonal Metric Spaces -- Chapter 4. Application of Measure of Noncompactness to the Infinite Systems of Second-Order Differential Equations in Banach Sequence Spaces c, lp and c0β -- Chapter 5. Infinite Systems of Differential Equations in Banach Spaces Constructed by Fibonacci Numbers -- Chapter 6. Convergence Properties of Genuine Bernstein-Durrmeyer Operators -- Chapter 7. Bivariate Szasz Type Operators Based on Multiple Appell Polynomials -- Chapter 8. Approximation Properties of Chlodowsky Variant of (P, Q) SzAsz–Mirakyan–Stancu Operators -- Chapter 9. Approximation Theorems for Positive Linear Operators Associated with Hermite and Laguerre Polynomials -- Chapter 10. On Generalized Picard Integral Operators -- Chapter 11. From Uniform to Statistical Convergence of Binomial-Type Operators -- Chapter 12. Weighted Statistically Uniform Convergence of Bögel Continuous Functions by Positive Linear Operators -- Chapter 13. Optimal Linear Approximation under General Statistical Convergence -- Chapter 14. Statistical Deferred Cesaro Summability Mean Based on (p, q)-Integers with Application to Approximation Theorems -- Chapter 15. Approximation Results for an Urysohn-type Nonlinear Bernstein Operators. |
Record Nr. | UNINA-9910303448003321 |
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Algebra and its Applications : ICAA, Aligarh, India, December 2014 / / edited by Syed Tariq Rizvi, Asma Ali, Vincenzo De Filippis |
Edizione | [1st ed. 2016.] |
Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2016 |
Descrizione fisica | 1 online resource (XVI, 430 p.) |
Disciplina | 512 |
Collana | Springer Proceedings in Mathematics & Statistics |
Soggetto topico |
Algebra
Sequences (Mathematics) Graph theory Sequences, Series, Summability Graph Theory |
ISBN | 981-10-1651-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Jae Koel Park and S. M. Tariq Rizvi: On some Classes of Module Hulls -- Akihiro Yamamura: Spined Product Decompositions of Orthocryptogroups -- Vincenzo de Filippis: Generalized Skew Derivations and g-Lie Derivations of Prime Rings -- Ashish Kumar Srivastava: Additive Representations of Elements in Rings: A Survey -- Shuliang Huang: Notes on Commutativity of Prime Rings -- Shervin Sahebi and V. Rahmani: Generalized Derivations on Rings and Banach Algebras -- Ravi A. Rao: A study of Suslin Matrices: Their Properties and Uses -- Shreedevi K. Masuti, Parangama Sarkar and J. K. Verma: Variation on the Grothendieck-Serre Formula for Hilbert Functions and Their Applications -- Tony Joseph Puthenpurakal: De Rham Cohomology of Local Cohomology Modules -- Manoj Kumar Yadav: Central Quotient Versus Commutator Subgroup of Groups -- Tamilselvi, A. Vidhya and B. Kethesan: Robinson-Schensted Correspondence for the Walled Brauer Algebras and the Walled Signed Brauer algebras -- M.K. Sen: Ӷ- Semigroups: A Survey -- N. K. Thakare, B. N. Waphare and AvinashPatil: Comparability Axioms in Orthomodular Lattices and Rings with Involution -- A. R. Rajan: Structure theory of regular Semigroups using Categories -- P. G. Romeo and Akhila R.: Biorder Ideals and Regular Rings -- Asma Ali and Farhat Ali: Product of Generalized Semiderivation in Prime Near Rings -- Selvaraj and R. Saravanan: n-Strongly Gorenstein Projective and Injective Complexes -- Basudeb Dhara: Generalized Derivations with Nilpotent Values on Multilinear Polynomials in Prime Rings -- Manoj Kumar Patel: Properties of Semi-Projective Modules and Their Endomorphism Rings -- R. P. Sharma: L Labelling of Sets Under the Actions of Sn and An -- Anil Khainar and B. N. Waphare: Zero-Divisor Graphs of Laurent Polynomials and Laurent Power Series -- Basudeb Dhara, Asma Ali and Shahoor Khan: Pair of Generalized Derivations and Lie Ideals in Prime Rings -- T. Tamizh Chelvam, T. Asir and K. Selvakumar: On Domination in Graphs from Commutative Rings: A survey -- A. K. Chaturvedi: On Iso-Retractable Modules and Rings -- Azeef Muhammed P. A.: Normal Categories from Completely Simple Semigroups -- N. M. Khan and Mohd. Aasim Khan: Ordered Semigroups Characterize in Terms of Intuitionstic Fuzzy Ideals -- R. D. Giri: On a Problem of Satyanarayana Regarding the Recognizability of Codes. |
Record Nr. | UNINA-9910151784303321 |
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The algebra of secondary cohomology operations / Hans-Joachim Baues |
Autore | Baues, Hans J. |
Pubbl/distr/stampa | Boston, MA : Birkhauser, 2006 |
Descrizione fisica | 483 p. ; 24 cm |
Disciplina | 512.64 |
Collana | Progress in mathematics [Birkhauser], 0743-1643; 247 |
Soggetto topico |
Algebra, Homological
Sequences (Mathematics) Cohomology operations |
ISBN |
3764374489 (alk. paper)
3764374497 (e-book) |
Classificazione |
AMS 18G10
AMS 55T15 AMS 55S20 LC QA169.B38 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991001576969707536 |
Baues, Hans J. | ||
Boston, MA : Birkhauser, 2006 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|
Algebraic shift register sequences / / Mark Goresky, Andrew Klapper [[electronic resource]] |
Autore | Goresky Mark <1950-> |
Pubbl/distr/stampa | Cambridge : , : Cambridge University Press, , 2012 |
Descrizione fisica | 1 online resource (xv, 498 pages) : digital, PDF file(s) |
Disciplina | 621.397 |
Soggetto topico |
Shift registers - Mathematics
Sequences (Mathematics) |
ISBN |
1-107-23004-7
1-280-87767-7 1-139-22298-8 9786613718983 1-139-21818-2 1-139-22470-0 1-139-21509-4 1-139-22127-2 1-139-05744-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; ALGEBRAIC SHIFT REGISTER SEQUENCES; Title; Copyright; Dedication; Contents; Figures; Tables; Acknowledgements; 1: Introduction; 1.1 Pseudo-random sequences; 1.2 LFSR sequences; 1.3 FCSR sequences; 1.4 Register synthesis; 1.5 Applications of pseudo-random sequences; 1.5.1 Frequency hopping spread spectrum; 1.5.2 Code division multiple access; 1.5.3 Optical CDMA; 1.5.4 Synchronization and radar; 1.5.5 Stream ciphers; 1.5.6 Pseudo-random arrays; 1.5.7 Monte Carlo; 1.5.8 Built in self test; 1.5.9 Wear leveling; Part I: Algebraically defined sequences; 2: Sequences; 2.1 Sequences and period
2.2 Fibonacci numbers2.3 Distinct sequences; 2.4 Sequence generators and models; 2.5 Exercises; 3: Linear feedback shift registers and linear recurrences; 3.1 Definitions; 3.2 Matrix description; 3.2.1 Companion matrix; 3.2.2 The period; 3.3 Initial loading; 3.4 Power series; 3.4.1 Definitions; 3.4.2 Recurrent sequences and the ring R0(x) of fractions; 3.4.3 Eventually periodic sequences and the ring E; 3.4.4 When R is a field; 3.4.5 R[[x]] as an inverse limit; 3.4.6 Reciprocal Laurent series; 3.5 Generating functions; 3.6 When the connection polynomial factors 3.7 Algebraic models and the ring R[x]/(q)3.7.1 Abstract representation; 3.7.2 Trace representation; 3.8 Families of recurring sequences and ideals; 3.8.1 Families of recurring sequences over a finite field; 3.8.2 Families of linearly recurring sequences over a ring; 3.9 Examples; 3.9.1 Shift registers over a field; 3.9.2 Fibonacci numbers; 3.10 Exercises; 4: Feedback with carry shift registers and multiply with carry sequences; 4.1 Definitions; 4.2 N-adic numbers; 4.2.1 Basic facts; 4.2.2 The ring QN; 4.2.3 The ring ZN,0; 4.2.4 ZN as an inverse limit; 4.2.5 Structure of ZN 4.3 Analysis of FCSRs4.4 Initial loading; 4.5 Representation of FCSR sequences; 4.6 Example: q=37; 4.7 Memory requirements; 4.8 Random number generation using MWC; 4.8.1 MWC generators; 4.8.2 Periodic states; 4.8.3 Memory requirements; 4.8.4 Finding good multipliers; 4.9 Exercises; 5: Algebraic feedback shift registers; 5.1 Definitions; 5.2 π-adic numbers; 5.2.1 Construction of Rπ; 5.2.2 Divisibility in Rπ; 5.2.3 The example of πd = N; 5.3 Properties of AFSRs; 5.4 Memory requirements; 5.4.1 AFSRs over number fields; 5.4.2 AFSRs over rational function fields 6.5 Elementary description of d-FCSR sequences |
Record Nr. | UNINA-9910461507003321 |
Goresky Mark <1950-> | ||
Cambridge : , : Cambridge University Press, , 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Algebraic shift register sequences / / Mark Goresky, Andrew Klapper [[electronic resource]] |
Autore | Goresky Mark <1950-> |
Pubbl/distr/stampa | Cambridge : , : Cambridge University Press, , 2012 |
Descrizione fisica | 1 online resource (xv, 498 pages) : digital, PDF file(s) |
Disciplina | 621.397 |
Soggetto topico |
Shift registers - Mathematics
Sequences (Mathematics) |
ISBN |
1-107-23004-7
1-280-87767-7 1-139-22298-8 9786613718983 1-139-21818-2 1-139-22470-0 1-139-21509-4 1-139-22127-2 1-139-05744-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; ALGEBRAIC SHIFT REGISTER SEQUENCES; Title; Copyright; Dedication; Contents; Figures; Tables; Acknowledgements; 1: Introduction; 1.1 Pseudo-random sequences; 1.2 LFSR sequences; 1.3 FCSR sequences; 1.4 Register synthesis; 1.5 Applications of pseudo-random sequences; 1.5.1 Frequency hopping spread spectrum; 1.5.2 Code division multiple access; 1.5.3 Optical CDMA; 1.5.4 Synchronization and radar; 1.5.5 Stream ciphers; 1.5.6 Pseudo-random arrays; 1.5.7 Monte Carlo; 1.5.8 Built in self test; 1.5.9 Wear leveling; Part I: Algebraically defined sequences; 2: Sequences; 2.1 Sequences and period
2.2 Fibonacci numbers2.3 Distinct sequences; 2.4 Sequence generators and models; 2.5 Exercises; 3: Linear feedback shift registers and linear recurrences; 3.1 Definitions; 3.2 Matrix description; 3.2.1 Companion matrix; 3.2.2 The period; 3.3 Initial loading; 3.4 Power series; 3.4.1 Definitions; 3.4.2 Recurrent sequences and the ring R0(x) of fractions; 3.4.3 Eventually periodic sequences and the ring E; 3.4.4 When R is a field; 3.4.5 R[[x]] as an inverse limit; 3.4.6 Reciprocal Laurent series; 3.5 Generating functions; 3.6 When the connection polynomial factors 3.7 Algebraic models and the ring R[x]/(q)3.7.1 Abstract representation; 3.7.2 Trace representation; 3.8 Families of recurring sequences and ideals; 3.8.1 Families of recurring sequences over a finite field; 3.8.2 Families of linearly recurring sequences over a ring; 3.9 Examples; 3.9.1 Shift registers over a field; 3.9.2 Fibonacci numbers; 3.10 Exercises; 4: Feedback with carry shift registers and multiply with carry sequences; 4.1 Definitions; 4.2 N-adic numbers; 4.2.1 Basic facts; 4.2.2 The ring QN; 4.2.3 The ring ZN,0; 4.2.4 ZN as an inverse limit; 4.2.5 Structure of ZN 4.3 Analysis of FCSRs4.4 Initial loading; 4.5 Representation of FCSR sequences; 4.6 Example: q=37; 4.7 Memory requirements; 4.8 Random number generation using MWC; 4.8.1 MWC generators; 4.8.2 Periodic states; 4.8.3 Memory requirements; 4.8.4 Finding good multipliers; 4.9 Exercises; 5: Algebraic feedback shift registers; 5.1 Definitions; 5.2 π-adic numbers; 5.2.1 Construction of Rπ; 5.2.2 Divisibility in Rπ; 5.2.3 The example of πd = N; 5.3 Properties of AFSRs; 5.4 Memory requirements; 5.4.1 AFSRs over number fields; 5.4.2 AFSRs over rational function fields 6.5 Elementary description of d-FCSR sequences |
Record Nr. | UNINA-9910790471703321 |
Goresky Mark <1950-> | ||
Cambridge : , : Cambridge University Press, , 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Algebraic shift register sequences / / Mark Goresky, Andrew Klapper |
Autore | Goresky Mark <1950-> |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Cambridge, UK ; ; New York, : Cambridge University Press, 2012 |
Descrizione fisica | 1 online resource (xv, 498 pages) : digital, PDF file(s) |
Disciplina | 621.397 |
Altri autori (Persone) | KlapperAndrew |
Soggetto topico |
Shift registers - Mathematics
Sequences (Mathematics) |
ISBN |
1-107-23004-7
1-280-87767-7 1-139-22298-8 9786613718983 1-139-21818-2 1-139-22470-0 1-139-21509-4 1-139-22127-2 1-139-05744-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; ALGEBRAIC SHIFT REGISTER SEQUENCES; Title; Copyright; Dedication; Contents; Figures; Tables; Acknowledgements; 1: Introduction; 1.1 Pseudo-random sequences; 1.2 LFSR sequences; 1.3 FCSR sequences; 1.4 Register synthesis; 1.5 Applications of pseudo-random sequences; 1.5.1 Frequency hopping spread spectrum; 1.5.2 Code division multiple access; 1.5.3 Optical CDMA; 1.5.4 Synchronization and radar; 1.5.5 Stream ciphers; 1.5.6 Pseudo-random arrays; 1.5.7 Monte Carlo; 1.5.8 Built in self test; 1.5.9 Wear leveling; Part I: Algebraically defined sequences; 2: Sequences; 2.1 Sequences and period
2.2 Fibonacci numbers2.3 Distinct sequences; 2.4 Sequence generators and models; 2.5 Exercises; 3: Linear feedback shift registers and linear recurrences; 3.1 Definitions; 3.2 Matrix description; 3.2.1 Companion matrix; 3.2.2 The period; 3.3 Initial loading; 3.4 Power series; 3.4.1 Definitions; 3.4.2 Recurrent sequences and the ring R0(x) of fractions; 3.4.3 Eventually periodic sequences and the ring E; 3.4.4 When R is a field; 3.4.5 R[[x]] as an inverse limit; 3.4.6 Reciprocal Laurent series; 3.5 Generating functions; 3.6 When the connection polynomial factors 3.7 Algebraic models and the ring R[x]/(q)3.7.1 Abstract representation; 3.7.2 Trace representation; 3.8 Families of recurring sequences and ideals; 3.8.1 Families of recurring sequences over a finite field; 3.8.2 Families of linearly recurring sequences over a ring; 3.9 Examples; 3.9.1 Shift registers over a field; 3.9.2 Fibonacci numbers; 3.10 Exercises; 4: Feedback with carry shift registers and multiply with carry sequences; 4.1 Definitions; 4.2 N-adic numbers; 4.2.1 Basic facts; 4.2.2 The ring QN; 4.2.3 The ring ZN,0; 4.2.4 ZN as an inverse limit; 4.2.5 Structure of ZN 4.3 Analysis of FCSRs4.4 Initial loading; 4.5 Representation of FCSR sequences; 4.6 Example: q=37; 4.7 Memory requirements; 4.8 Random number generation using MWC; 4.8.1 MWC generators; 4.8.2 Periodic states; 4.8.3 Memory requirements; 4.8.4 Finding good multipliers; 4.9 Exercises; 5: Algebraic feedback shift registers; 5.1 Definitions; 5.2 π-adic numbers; 5.2.1 Construction of Rπ; 5.2.2 Divisibility in Rπ; 5.2.3 The example of πd = N; 5.3 Properties of AFSRs; 5.4 Memory requirements; 5.4.1 AFSRs over number fields; 5.4.2 AFSRs over rational function fields 6.5 Elementary description of d-FCSR sequences |
Record Nr. | UNINA-9910814098603321 |
Goresky Mark <1950-> | ||
Cambridge, UK ; ; New York, : Cambridge University Press, 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|