Adaptive tests of significance using permutations of residuals with R and SAS [[electronic resource] /] / Thomas W. O'Gorman |
Autore | O'Gorman Thomas W |
Edizione | [1st edition] |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley, 2012 |
Descrizione fisica | 1 online resource (365 p.) |
Disciplina | 519.5/36 |
Soggetto topico |
Regression analysis
Computer adaptive testing R (Computer program language) |
ISBN |
1-280-58894-2
1-118-21825-6 9786613618771 1-118-21822-1 |
Classificazione | MAT029030 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Adaptive Tests of Significance Using Permutations of Residuals with R and SAS®; CONTENTS; Preface; 1 Introduction; 1.1 Why Use Adaptive Tests?; 1.2 A Brief History of Adaptive Tests; 1.2.1 Early Tests and Estimators; 1.2.2 Rank Tests; 1.2.3 The Weighted Least Squares Approach; 1.2.4 Recent Rank-Based Tests; 1.3 The Adaptive Test of Hogg, Fisher, and Randles; 1.3.1 Level of Significance of the HFR Test; 1.3.2 Comparison of Power of the HFR Test to the t Test; 1.4 Limitations of Rank-Based Tests; 1.5 The Adaptive Weighted Least Squares Approach; 1.5.1 Level of Significance
1.5.2 Comparison of Power of the Adaptive WLS Test to the t Test and the HFR Test1.6 Development of the Adaptive WLS Test; 2 Smoothing Methods and Normalizing Transformations; 2.1 Traditional Estimators of the Median and the Interquartile Range; 2.2 Percentile Estimators that Use the Smooth Cumulative Distribution Function; 2.2.1 Smoothing the Cumulative Distribution Function; 2.2.2 Using the Smoothed c.d.f. to Compute Percentiles; 2.2.3 R Code for Smoothing the c.d.f.; 2.2.4 R Code for Finding Percentiles; 2.3 Estimating the Bandwidth 2.3.1 An Estimator of Variability Based on Traditional Percentiles2.3.2 R Code for Finding the Bandwidth; 2.3.3 An Estimator of Variability Based on Percentiles from the Smoothed Distribution Function; 2.4 Normalizing Transformations; 2.4.1 Traditional Normalizing Methods; 2.4.2 Normalizing Data by Weighting; 2.5 The Weighting Algorithm; 2.5.1 An Example of the Weighing Procedure; 2.5.2 R Code for Weighting the Observations; 2.6 Computing the Bandwidth; 2.6.1 Error Distributions; 2.6.2 Measuring Errors in Adaptive Weighting; 2.6.3 Simulation Studies; 2.7 Examples of Transformed Data Exercises3 A Two-Sample Adaptive Test; 3.1 A Two-Sample Model; 3.2 Computing the Adaptive Weights; 3.2.1 R Code for Computing the Weights; 3.3 The Test Statistics for Adaptive Tests; 3.3.1 R Code to Compute the Test Statistic; 3.4 Permutation Methods for Two-Sample Tests; 3.4.1 Permutation of Observations; 3.4.2 Permutation of Residuals; 3.4.3 R Code for Permutations; 3.5 An Example of a Two-Sample Test; 3.6 R Code for the Two-Sample Test; 3.6.1 R Code for Computing the Test Statistics; 3.6.2 R Code to Compute the Traditional F Test Statistic and p-Value 3.6.3 An R Function that Computes the p-Value for the Adaptive Test3.6.4 R Code to Perform the Adaptive Test; 3.7 Level of Significance of the Adaptive Test; 3.8 Power of the Adaptive Test; 3.9 Sample Size Estimation; 3.10 A SAS Macro for the Adaptive Test; 3.11 Modifications for One-Tailed Tests; 3.12 Justification of the Weighting Method; 3.13 Comments on the Adaptive Two-sample Test; Exercises; 4 Permutation Tests with Linear Models; 4.1 Introduction; 4.2 Notation; 4.3 Permutations with Blocking; 4.4 Linear Models in Matrix Form; 4.5 Permutation Methods; 4.5.1 The Permute-Errors Method 4.5.2 The Permute-Residuals Method |
Record Nr. | UNINA-9910141323703321 |
O'Gorman Thomas W
![]() |
||
Hoboken, N.J., : Wiley, 2012 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Adaptive tests of significance using permutations of residuals with R and SAS / / Thomas W. O'Gorman |
Autore | O'Gorman Thomas W |
Edizione | [1st edition] |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley, 2012 |
Descrizione fisica | 1 online resource (365 p.) |
Disciplina | 519.5/36 |
Soggetto topico |
Regression analysis
Computer adaptive testing R (Computer program language) |
ISBN |
9786613618771
9781280588945 1280588942 9781118218259 1118218256 9781118218228 1118218221 |
Classificazione | MAT029030 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Adaptive Tests of Significance Using Permutations of Residuals with R and SAS®; CONTENTS; Preface; 1 Introduction; 1.1 Why Use Adaptive Tests?; 1.2 A Brief History of Adaptive Tests; 1.2.1 Early Tests and Estimators; 1.2.2 Rank Tests; 1.2.3 The Weighted Least Squares Approach; 1.2.4 Recent Rank-Based Tests; 1.3 The Adaptive Test of Hogg, Fisher, and Randles; 1.3.1 Level of Significance of the HFR Test; 1.3.2 Comparison of Power of the HFR Test to the t Test; 1.4 Limitations of Rank-Based Tests; 1.5 The Adaptive Weighted Least Squares Approach; 1.5.1 Level of Significance
1.5.2 Comparison of Power of the Adaptive WLS Test to the t Test and the HFR Test1.6 Development of the Adaptive WLS Test; 2 Smoothing Methods and Normalizing Transformations; 2.1 Traditional Estimators of the Median and the Interquartile Range; 2.2 Percentile Estimators that Use the Smooth Cumulative Distribution Function; 2.2.1 Smoothing the Cumulative Distribution Function; 2.2.2 Using the Smoothed c.d.f. to Compute Percentiles; 2.2.3 R Code for Smoothing the c.d.f.; 2.2.4 R Code for Finding Percentiles; 2.3 Estimating the Bandwidth 2.3.1 An Estimator of Variability Based on Traditional Percentiles2.3.2 R Code for Finding the Bandwidth; 2.3.3 An Estimator of Variability Based on Percentiles from the Smoothed Distribution Function; 2.4 Normalizing Transformations; 2.4.1 Traditional Normalizing Methods; 2.4.2 Normalizing Data by Weighting; 2.5 The Weighting Algorithm; 2.5.1 An Example of the Weighing Procedure; 2.5.2 R Code for Weighting the Observations; 2.6 Computing the Bandwidth; 2.6.1 Error Distributions; 2.6.2 Measuring Errors in Adaptive Weighting; 2.6.3 Simulation Studies; 2.7 Examples of Transformed Data Exercises3 A Two-Sample Adaptive Test; 3.1 A Two-Sample Model; 3.2 Computing the Adaptive Weights; 3.2.1 R Code for Computing the Weights; 3.3 The Test Statistics for Adaptive Tests; 3.3.1 R Code to Compute the Test Statistic; 3.4 Permutation Methods for Two-Sample Tests; 3.4.1 Permutation of Observations; 3.4.2 Permutation of Residuals; 3.4.3 R Code for Permutations; 3.5 An Example of a Two-Sample Test; 3.6 R Code for the Two-Sample Test; 3.6.1 R Code for Computing the Test Statistics; 3.6.2 R Code to Compute the Traditional F Test Statistic and p-Value 3.6.3 An R Function that Computes the p-Value for the Adaptive Test3.6.4 R Code to Perform the Adaptive Test; 3.7 Level of Significance of the Adaptive Test; 3.8 Power of the Adaptive Test; 3.9 Sample Size Estimation; 3.10 A SAS Macro for the Adaptive Test; 3.11 Modifications for One-Tailed Tests; 3.12 Justification of the Weighting Method; 3.13 Comments on the Adaptive Two-sample Test; Exercises; 4 Permutation Tests with Linear Models; 4.1 Introduction; 4.2 Notation; 4.3 Permutations with Blocking; 4.4 Linear Models in Matrix Form; 4.5 Permutation Methods; 4.5.1 The Permute-Errors Method 4.5.2 The Permute-Residuals Method |
Record Nr. | UNINA-9910811410703321 |
O'Gorman Thomas W
![]() |
||
Hoboken, N.J., : Wiley, 2012 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced analytics with R and Tableau : advanced visual analytical solutions for your business / / Jen Stirrup, Ruben Oliva Ramos |
Autore | Stirrup Jen |
Edizione | [1st edition] |
Pubbl/distr/stampa | Birmingham : , : Packt, , 2017 |
Descrizione fisica | 1 online resource (178 pages) : illustrations |
Disciplina | 658.4038011 |
Soggetto topico | R (Computer program language) |
Soggetto genere / forma | Electronic books. |
ISBN | 1-5231-2523-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910467171903321 |
Stirrup Jen
![]() |
||
Birmingham : , : Packt, , 2017 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced analytics with R and Tableau : advanced visual analytical solutions for your business / / Jen Stirrup, Ruben Oliva Ramos |
Autore | Stirrup Jen |
Edizione | [1st edition] |
Pubbl/distr/stampa | Birmingham : , : Packt, , 2017 |
Descrizione fisica | 1 online resource (178 pages) : illustrations |
Disciplina | 658.4038011 |
Soggetto topico | R (Computer program language) |
ISBN | 1-5231-2523-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910796534703321 |
Stirrup Jen
![]() |
||
Birmingham : , : Packt, , 2017 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced analytics with R and Tableau : advanced visual analytical solutions for your business / / Jen Stirrup, Ruben Oliva Ramos |
Autore | Stirrup Jen |
Edizione | [1st edition] |
Pubbl/distr/stampa | Birmingham : , : Packt, , 2017 |
Descrizione fisica | 1 online resource (178 pages) : illustrations |
Disciplina | 658.4038011 |
Soggetto topico | R (Computer program language) |
ISBN | 1-5231-2523-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910827493103321 |
Stirrup Jen
![]() |
||
Birmingham : , : Packt, , 2017 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced deep learning with R : become an expert at designing, building, and improving advanced neural network models using R / / Bharatendra Rai |
Autore | Rai Bharatendra |
Edizione | [1st edition] |
Pubbl/distr/stampa | Birmingham, England ; ; Mumbai : , : Packt, , [2019] |
Descrizione fisica | 1 online resource (vii, 337 pages) : illustrations |
Disciplina | 519.502855133 |
Soggetto topico | R (Computer program language) |
ISBN | 1-78953-498-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910793816103321 |
Rai Bharatendra
![]() |
||
Birmingham, England ; ; Mumbai : , : Packt, , [2019] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced deep learning with R : become an expert at designing, building, and improving advanced neural network models using R / / Bharatendra Rai |
Autore | Rai Bharatendra |
Edizione | [1st edition] |
Pubbl/distr/stampa | Birmingham, England ; ; Mumbai : , : Packt, , [2019] |
Descrizione fisica | 1 online resource (vii, 337 pages) : illustrations |
Disciplina | 519.502855133 |
Soggetto topico | R (Computer program language) |
ISBN | 1-78953-498-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910827078003321 |
Rai Bharatendra
![]() |
||
Birmingham, England ; ; Mumbai : , : Packt, , [2019] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced Object-Oriented Programming in R : Statistical Programming for Data Science, Analysis and Finance / / by Thomas Mailund |
Autore | Mailund Thomas |
Edizione | [1st ed. 2017.] |
Pubbl/distr/stampa | Berkeley, CA : , : Apress : , : Imprint : Apress, , 2017 |
Descrizione fisica | 1 online resource (XV, 110 p. 10 illus.) |
Disciplina | 005.11 |
Soggetto topico |
Computer programming
Programming languages (Electronic computers) Mathematical statistics R (Computer program language) Programming Techniques Programming Languages, Compilers, Interpreters Probability and Statistics in Computer Science |
ISBN |
9781484229194
1484229193 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1. Classes and Generic Functions -- 2. Class Hierarchies -- 3. Implementation Reuse -- 4. Statistical Models -- 5. Operator Overloading -- 6. S4 Classes -- 7. R6 Classes -- 8. Conclusions. |
Record Nr. | UNINA-9910254567203321 |
Mailund Thomas
![]() |
||
Berkeley, CA : , : Apress : , : Imprint : Apress, , 2017 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced R : data programming and the cloud / / by Matt Wiley, Joshua F. Wiley |
Autore | Wiley Matt |
Edizione | [1st ed. 2016.] |
Pubbl/distr/stampa | Berkeley, CA : , : Apress : , : Imprint : Apress, , 2016 |
Descrizione fisica | 1 online resource (XIX, 279 p. 77 illus., 40 illus. in color.) |
Disciplina | 005.13 |
Soggetto topico |
Programming languages (Electronic computers)
Mathematical statistics Statistics Computer programming R (Computer program language) Programming Languages, Compilers, Interpreters Probability and Statistics in Computer Science Statistics and Computing/Statistics Programs Programming Techniques |
ISBN |
9781484220771
1484220773 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1.Programming Basics -- 2.Programming Utilities -- 3.Loops, flow control, and *apply functions -- 4.Writing Functions -- 5.Writing Classes and Methods -- 6.Writing a Package -- 7.Data Management using data.table -- 8.Data Munging With data.table -- 9.Other Tools for Data Management -- 10.Reading Big Data(bases) -- 11.Getting a Cloud -- 12.Ubuntu for Windows Users -- 13.Every Cloud has a Shiny lining -- 14.Shiny Dashboard Sampler -- 15.Dynamic Reports and the Cloud -- References. |
Record Nr. | UNINA-9910151576903321 |
Wiley Matt
![]() |
||
Berkeley, CA : , : Apress : , : Imprint : Apress, , 2016 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced R 4 Data Programming and the Cloud : Using PostgreSQL, AWS, and Shiny / / by Matt Wiley, Joshua F. Wiley |
Autore | Wiley Matt |
Edizione | [2nd ed. 2020.] |
Pubbl/distr/stampa | Berkeley, CA : , : Apress : , : Imprint : Apress, , 2020 |
Descrizione fisica | 1 online resource (XIII, 433 p. 65 illus., 9 illus. in color.) |
Disciplina | 005.133 |
Soggetto topico |
Programming languages (Electronic computers)
Mathematical statistics Statistics Computer programming R (Computer program language) Programming Languages, Compilers, Interpreters Probability and Statistics in Computer Science Statistics and Computing/Statistics Programs Programming Techniques |
ISBN |
9781484259733
1484259734 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1. Programming Basics -- 2. Programming Utilities -- 3. Programming Automation -- 4. Writing Functions -- 5. Writing Classes and Methods -- 6. Writing Packages -- 7. Introduction to data.table -- 8. Advanced data.table -- 9. Other Data Management Packages -- 10. Reading Big Data -- 11. Getting Your Cloud -- 12. Cloud Ubuntu for Windows Users -- 13. Every Cloud has a Shiny lining -- 14. Shiny Dashboard Sampler -- 15. Dynamic Reports and the Cloud -- Bibliography. |
Altri titoli varianti | Advanced R four data programming and the cloud |
Record Nr. | UNINA-9910411930303321 |
Wiley Matt
![]() |
||
Berkeley, CA : , : Apress : , : Imprint : Apress, , 2020 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|