Advanced diffusion processes and phenomena / / edited by Andreas Öchsner, Graeme Murch and Irina Belova |
Pubbl/distr/stampa | Zurich, Switzerland : , : TTP, , 2014 |
Descrizione fisica | 1 online resource (238 p.) |
Disciplina | 530.415 |
Collana | Defect and Diffusion Forum |
Soggetto topico |
Diffusion
Diffusion processes |
Soggetto genere / forma | Electronic books. |
ISBN | 3-03826-514-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Advanced Diffusion Processes and Phenomena; Preface; Table of Contents; An Improved Heat Equation to Model Ductile-to-Brittle Failure Mode Transition at High Strain Rates Using Fully Coupled Thermal-Structural Finite Element Analysis; Estimating the Permeability of Ferrite-Polymer Composite via a Numerical Optimization Method; Numerical Modeling of Solidification Substitute - Thermal Capacity of Binary Alloy; Plasma Polymerization of Hexamethyldisiloxane and Tetraethoxysilane Thin Films for Humidity Sensing Application
Study of Modification of PP/EPDM Compounds by Ultraviolet and Gamma Radiation Using Recycled Polypropylene Collected after EPDM Waste Processing as Raw MaterialsThe Relation between Drift, Entropy Distribution and Kirkendall Plane Position during Diffusion; Neural Network-Based Prediction of Effective Heat Storage Coefficient of Building Materials; An Overview of the Interdiffusion Studies in Mo-Si and W-Si Systems; Competitive Precipitation and Recrystallization in U-7.5Nb-2.5Zr Alloy; Phase Transformations and Recrystallization in Cold-Rolled Al-Mn, Al-Sc-Zr and Al-Mn-Sc-Zr Alloy Use of Cellular Automata for Modelling of the Material Erosion and Grit Entrainment during Discharge in EDMNanostructuring of Ni by Various Modes of Severe Plastic Deformation; Diffusion in an Ensemble of Intersecting Grain Boundaries; Solution of Direct and Inverse Problems for Infiltration and Contaminant Adsorption in Partially Saturated Porous Media; Pulse Carburization of Steel - Model of the Process; Isotope Exchange between 18O2 Gas and Mechanoactivated Oxides of the Family Rare Earth - Manganese - Oxygen; Diffusion of Oxygen in Ti-15Mo-xZr Alloys Studied by Anelastic Spectroscopy Characterization of the Effects of Active Filler-Metal Alloys in Joining Ceramic-to-Ceramic and Ceramic-to-Metal MaterialsTest Matrix for Heat Exposure of Aluminum Alloys at Various Times and Temperatures; Specific Features of Interfaces in Cu-Nb Nanocomposites; Effects of High Reynolds Number Impinging Jet on the Heat Conduction in Work-Pieces Irradiated by a Moving Heat Source; About Thermo-Hydraulic Properties of Open Cell Foams: Pore Scale Numerical Analysis of Strut Shapes; The Role of Surface Area of ZnO Nanoparticles as an Agent for some Chemical Reactions On a Finite Element Approach to Predict the Thermal Conductivity of Carbon Fiber Reinforced Composite MaterialsA Thermo-Mechanical Model for a Counterflow Biomass Gasifier; Lattice Boltzmann Method Applied to Diffusion in Restructured Heterogeneous Media; Keywords Index; Authors Index |
Record Nr. | UNINA-9910464515703321 |
Zurich, Switzerland : , : TTP, , 2014 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced diffusion processes and phenomena / / edited by Andreas Öchsner, Graeme Murch and Irina Belova |
Pubbl/distr/stampa | Zurich, Switzerland : , : TTP, , 2014 |
Descrizione fisica | 1 online resource (238 p.) |
Disciplina | 530.415 |
Collana | Defect and Diffusion Forum |
Soggetto topico |
Diffusion
Diffusion processes |
Soggetto genere / forma | Electronic books. |
ISBN | 3-03826-514-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Advanced Diffusion Processes and Phenomena; Preface; Table of Contents; An Improved Heat Equation to Model Ductile-to-Brittle Failure Mode Transition at High Strain Rates Using Fully Coupled Thermal-Structural Finite Element Analysis; Estimating the Permeability of Ferrite-Polymer Composite via a Numerical Optimization Method; Numerical Modeling of Solidification Substitute - Thermal Capacity of Binary Alloy; Plasma Polymerization of Hexamethyldisiloxane and Tetraethoxysilane Thin Films for Humidity Sensing Application
Study of Modification of PP/EPDM Compounds by Ultraviolet and Gamma Radiation Using Recycled Polypropylene Collected after EPDM Waste Processing as Raw MaterialsThe Relation between Drift, Entropy Distribution and Kirkendall Plane Position during Diffusion; Neural Network-Based Prediction of Effective Heat Storage Coefficient of Building Materials; An Overview of the Interdiffusion Studies in Mo-Si and W-Si Systems; Competitive Precipitation and Recrystallization in U-7.5Nb-2.5Zr Alloy; Phase Transformations and Recrystallization in Cold-Rolled Al-Mn, Al-Sc-Zr and Al-Mn-Sc-Zr Alloy Use of Cellular Automata for Modelling of the Material Erosion and Grit Entrainment during Discharge in EDMNanostructuring of Ni by Various Modes of Severe Plastic Deformation; Diffusion in an Ensemble of Intersecting Grain Boundaries; Solution of Direct and Inverse Problems for Infiltration and Contaminant Adsorption in Partially Saturated Porous Media; Pulse Carburization of Steel - Model of the Process; Isotope Exchange between 18O2 Gas and Mechanoactivated Oxides of the Family Rare Earth - Manganese - Oxygen; Diffusion of Oxygen in Ti-15Mo-xZr Alloys Studied by Anelastic Spectroscopy Characterization of the Effects of Active Filler-Metal Alloys in Joining Ceramic-to-Ceramic and Ceramic-to-Metal MaterialsTest Matrix for Heat Exposure of Aluminum Alloys at Various Times and Temperatures; Specific Features of Interfaces in Cu-Nb Nanocomposites; Effects of High Reynolds Number Impinging Jet on the Heat Conduction in Work-Pieces Irradiated by a Moving Heat Source; About Thermo-Hydraulic Properties of Open Cell Foams: Pore Scale Numerical Analysis of Strut Shapes; The Role of Surface Area of ZnO Nanoparticles as an Agent for some Chemical Reactions On a Finite Element Approach to Predict the Thermal Conductivity of Carbon Fiber Reinforced Composite MaterialsA Thermo-Mechanical Model for a Counterflow Biomass Gasifier; Lattice Boltzmann Method Applied to Diffusion in Restructured Heterogeneous Media; Keywords Index; Authors Index |
Record Nr. | UNINA-9910662969703321 |
Zurich, Switzerland : , : TTP, , 2014 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Analysis and geometry of Markov diffusion operators / Dominique Bakry, Ivan Gentil, Michel Ledoux |
Autore | Bakry, Dominique |
Pubbl/distr/stampa | Cham, SZ : Springer, c2014 |
Descrizione fisica | xx, 552 p. : ill. ; 24 cm |
Disciplina | 519.233 |
Altri autori (Persone) |
Gentil, Ivanauthor
Ledoux, Michelauthor |
Collana | A series of comprehensive studies in mathematics ; 348 |
Soggetto topico |
Diffusion processes
Markov processes Functional inequalities |
ISBN | 9783319002262 |
Classificazione |
AMS 39B62
AMS 60J60 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-b14376295 |
Bakry, Dominique
![]() |
||
Cham, SZ : Springer, c2014 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Analysis for diffusion processes on Riemannian manifolds / / Feng-Yu Wang |
Autore | Wang Feng-Yu |
Pubbl/distr/stampa | Singapore : , : World Scientific Publishing, , 2014 |
Descrizione fisica | 1 online resource (392 p.) |
Disciplina | 516.373 |
Collana | Advanced Series on Statistical Science & Applied Probability |
Soggetto topico |
Riemannian manifolds
Diffusion processes |
Soggetto genere / forma | Electronic books. |
ISBN | 981-4452-65-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; Contents; 1. Preliminaries; 1.1 Riemannian manifold; 1.1.1 Differentiable manifold; 1.1.2 Riemannian manifold; 1.1.3 Some formulae and comparison results; 1.2 Riemannian manifold with boundary; 1.3 Coupling and applications; 1.3.1 Transport problem and Wasserstein distance; 1.3.2 Optimal coupling and optimal map; 1.3.3 Coupling for stochastic processes; 1.3.4 Coupling by change of measure; 1.4 Harnack inequalities and applications; 1.4.1 Harnack inequality; 1.4.2 Shift Harnack inequality; 1.5 Harnack inequality and derivative estimate
1.5.1 Harnack inequality and entropy-gradient estimate1.5.2 Harnack inequality and L2-gradient estimate; 1.5.3 Harnack inequalities and gradient-gradient estimates; 1.6 Functional inequalities and applications; 1.6.1 Poincar e type inequality and essential spectrum; 1.6.2 Exponential decay in the tail norm; 1.6.3 The F-Sobolev inequality; 1.6.4 Weak Poincare inequality; 1.6.5 Equivalence of irreducibility and weak Poincare inequality; 2. Diffusion Processes on Riemannian Manifolds without Boundary; 2.1 Brownian motion with drift; 2.2 Formulae for Pt and RicZ 2.3 Equivalent semigroup inequalities for curvature lower bound2.4 Applications of equivalent semigroup inequalities; 2.5 Transportation-cost inequality; 2.5.1 From super Poincare to weighted log-Sobolev inequalities; 2.5.2 From log-Sobolev to transportation-cost inequalities; 2.5.3 From super Poincare to transportation-cost inequalities; 2.5.4 Super Poincare inequality by perturbations; 2.6 Log-Sobolev inequality: Different roles of Ric and Hess; 2.6.1 Exponential estimate and concentration of; 2.6.2 Harnack inequality and the log-Sobolev inequality 2.6.3 Hypercontractivity and ultracontractivity2.7 Curvature-dimension condition and applications; 2.7.1 Gradient and Harnack inequalities; 2.7.2 HWI inequalities; 2.8 Intrinsic ultracontractivity on non-compact manifolds; 2.8.1 The intrinsic super Poincare inequality; 2.8.2 Curvature conditions for intrinsic ultracontractivity; 2.8.3 Some examples; 3. Reflecting Diffusion Processes on Manifolds with Boundary; 3.1 Kolmogorov equations and the Neumann problem; 3.2 Formulae for Pt, RicZ and I; 3.2.1 Formula for Pt; 3.2.2 Formulae for RicZ and I; 3.2.3 Gradient estimates 3.3 Equivalent semigroup inequalities for curvature conditionand lower bound of I3.3.1 Equivalent statements for lower bounds of RicZ and I; 3.3.2 Equivalent inequalities for curvature-dimension condition and lower bound of I; 3.4 Harnack inequalities for SDEs on Rd and extension to nonconvex manifolds; 3.4.1 Construction of the coupling; 3.4.2 Harnack inequality on Rd; 3.4.3 Extension to manifolds with convex boundary; 3.4.4 Neumann semigroup on non-convex manifolds; 3.5 Functional inequalities; 3.5.1 Estimates for inequality constants on compact manifolds 3.5.2 A counterexample for Bakry-Emery criterion |
Record Nr. | UNINA-9910453237703321 |
Wang Feng-Yu
![]() |
||
Singapore : , : World Scientific Publishing, , 2014 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Analysis for diffusion processes on Riemannian manifolds / / Feng-Yu Wang |
Autore | Wang Feng-Yu |
Pubbl/distr/stampa | Singapore : , : World Scientific Publishing, , 2014 |
Descrizione fisica | 1 online resource (392 p.) |
Disciplina | 516.373 |
Collana | Advanced Series on Statistical Science & Applied Probability |
Soggetto topico |
Riemannian manifolds
Diffusion processes |
ISBN | 981-4452-65-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; Contents; 1. Preliminaries; 1.1 Riemannian manifold; 1.1.1 Differentiable manifold; 1.1.2 Riemannian manifold; 1.1.3 Some formulae and comparison results; 1.2 Riemannian manifold with boundary; 1.3 Coupling and applications; 1.3.1 Transport problem and Wasserstein distance; 1.3.2 Optimal coupling and optimal map; 1.3.3 Coupling for stochastic processes; 1.3.4 Coupling by change of measure; 1.4 Harnack inequalities and applications; 1.4.1 Harnack inequality; 1.4.2 Shift Harnack inequality; 1.5 Harnack inequality and derivative estimate
1.5.1 Harnack inequality and entropy-gradient estimate1.5.2 Harnack inequality and L2-gradient estimate; 1.5.3 Harnack inequalities and gradient-gradient estimates; 1.6 Functional inequalities and applications; 1.6.1 Poincar e type inequality and essential spectrum; 1.6.2 Exponential decay in the tail norm; 1.6.3 The F-Sobolev inequality; 1.6.4 Weak Poincare inequality; 1.6.5 Equivalence of irreducibility and weak Poincare inequality; 2. Diffusion Processes on Riemannian Manifolds without Boundary; 2.1 Brownian motion with drift; 2.2 Formulae for Pt and RicZ 2.3 Equivalent semigroup inequalities for curvature lower bound2.4 Applications of equivalent semigroup inequalities; 2.5 Transportation-cost inequality; 2.5.1 From super Poincare to weighted log-Sobolev inequalities; 2.5.2 From log-Sobolev to transportation-cost inequalities; 2.5.3 From super Poincare to transportation-cost inequalities; 2.5.4 Super Poincare inequality by perturbations; 2.6 Log-Sobolev inequality: Different roles of Ric and Hess; 2.6.1 Exponential estimate and concentration of; 2.6.2 Harnack inequality and the log-Sobolev inequality 2.6.3 Hypercontractivity and ultracontractivity2.7 Curvature-dimension condition and applications; 2.7.1 Gradient and Harnack inequalities; 2.7.2 HWI inequalities; 2.8 Intrinsic ultracontractivity on non-compact manifolds; 2.8.1 The intrinsic super Poincare inequality; 2.8.2 Curvature conditions for intrinsic ultracontractivity; 2.8.3 Some examples; 3. Reflecting Diffusion Processes on Manifolds with Boundary; 3.1 Kolmogorov equations and the Neumann problem; 3.2 Formulae for Pt, RicZ and I; 3.2.1 Formula for Pt; 3.2.2 Formulae for RicZ and I; 3.2.3 Gradient estimates 3.3 Equivalent semigroup inequalities for curvature conditionand lower bound of I3.3.1 Equivalent statements for lower bounds of RicZ and I; 3.3.2 Equivalent inequalities for curvature-dimension condition and lower bound of I; 3.4 Harnack inequalities for SDEs on Rd and extension to nonconvex manifolds; 3.4.1 Construction of the coupling; 3.4.2 Harnack inequality on Rd; 3.4.3 Extension to manifolds with convex boundary; 3.4.4 Neumann semigroup on non-convex manifolds; 3.5 Functional inequalities; 3.5.1 Estimates for inequality constants on compact manifolds 3.5.2 A counterexample for Bakry-Emery criterion |
Record Nr. | UNINA-9910649879103321 |
Wang Feng-Yu
![]() |
||
Singapore : , : World Scientific Publishing, , 2014 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Analysis for diffusion processes on Riemannian manifolds / Feng-Yu Wang |
Autore | Wang, Feng-Yu |
Pubbl/distr/stampa | Singapore ; Hackensack, N.J. : World Scientific Pub. Co., c2014 |
Descrizione fisica | xii, 379 p. ; 24 cm |
Disciplina | 516.373 |
Collana | Advanced series on statistical science & applied probability, 1793-091X ; 18 |
Soggetto topico |
Riemannian manifolds
Diffusion processes |
ISBN | 9789814452649 |
Classificazione |
AMS 60J60
AMS 58J65 AMS 60H LC QA649.W36 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-b14233952 |
Wang, Feng-Yu
![]() |
||
Singapore ; Hackensack, N.J. : World Scientific Pub. Co., c2014 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Applied diffusion processes from engineering to finance [[electronic resource] /] / Jacques Janssen, Oronzio Manca, Raimando Manca |
Autore | Janssen Jacques |
Pubbl/distr/stampa | London, : Wiley, 2013 |
Descrizione fisica | 1 online resource (411 p.) |
Disciplina | 519.233 |
Altri autori (Persone) |
MancaOronzio
MancaRaimondo |
Collana | ISTE |
Soggetto topico |
Business mathematics
Differential equations, Partial Diffusion processes Engineering mathematics |
ISBN |
1-118-57833-3
1-118-57834-1 1-299-47558-2 1-118-57668-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Title Page; Contents; Introduction; Chapter 1. Diffusion Phenomena and Models; 1.1. General presentation of diffusion process; 1.2. General balance equations; 1.3. Heat conduction equation; 1.4. Initial and boundary conditions; Chapter 2. Probabilistic Models of Diffusion Processes; 2.1. Stochastic differentiation; 2.1.1. Definition; 2.1.2. Examples; 2.2. Itô's formula; 2.2.1. Stochastic differential of a product; 2.2.2. Itô's formula with time dependence; 2.2.3. Interpretation of Itô's formula; 2.2.4. Other extensions of Itô's formula; 2.3. Stochastic differential equations (SDE)
2.3.1. Existence and unicity general theorem (Gikhman and Skorokhod [GIK 68])2.3.2. Solution of SDE under the canonical form; 2.4. Itô and diffusion processes; 2.4.1. Itô processes; 2.4.2. Diffusion processes; 2.4.3. Kolmogorov equations; 2.5. Some particular cases of diffusion processes; 2.5.1. Reduced form; 2.5.2. The OUV (Ornstein-Uhlenbeck-Vasicek) SDE; 2.5.3. Solution of the SDE of Black-Scholes-Samuelson; 2.6. Multidimensional diffusion processes; 2.6.1. Multidimensional SDE; 2.6.2. Multidimensional Itô and diffusion processes; 2.6.3. Properties of multidimensional diffusion processes 2.6.4. Kolmogorov equations2.7. The Stroock-Varadhan martingale characterization of diffusions (Karlin and Taylor [KAR 81]); 2.8. The Feynman-Kac formula (Platen and Heath); 2.8.1. Terminal condition; 2.8.2. Discounted payoff function; 2.8.3. Discounted payoff function and payoff rate; Chapter 3. Solving Partial Differential Equations of Second Order; 3.1. Basic definitions on PDE of second order; 3.1.1. Notation; 3.1.2. Characteristics; 3.1.3. Canonical form of PDE; 3.2. Solving the heat equation; 3.2.1. Separation of variables 3.2.2. Separation of variables in the rectangular Cartesian coordinates3.2.3. Orthogonality of functions; 3.2.4. Fourier series; 3.2.5. Sturm-Liouville problem; 3.2.6. One-dimensional homogeneous problem in a finite medium; 3.3. Solution by the method of Laplace transform; 3.3.1. Definition of the Laplace transform; 3.3.2. Properties of the Laplace transform; 3.4. Green's functions; 3.4.1. Green's function as auxiliary problem to solve diffusive problems; 3.4.2. Analysis for determination of Green's function; Chapter 4. Problems in Finance; 4.1. Basic stochastic models for stock prices 4.1.1. The Black, Scholes and Samuelson model4.1.2. BSS model with deterministic variation of μ and s; 4.2. The bond investments; 4.2.1. Introduction; 4.2.2. Yield curve; 4.2.3. Yield to maturity for a financial investment and for a bond; 4.3. Dynamic deterministic continuous time model for instantaneous interest rate; 4.3.1. Instantaneous interest rate; 4.3.2. Particular cases; 4.3.3. Yield curve associated with instantaneous interest rate; 4.3.4. Examples of theoretical models; 4.4. Stochastic continuous time dynamic model for instantaneous interest rate; 4.4.1. The OUV stochastic model 4.4.2. The CIR model (1985) |
Record Nr. | UNINA-9910139005203321 |
Janssen Jacques
![]() |
||
London, : Wiley, 2013 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Asymptotic Brownscher bewegungen ... / Anton Thalmaier |
Autore | Thalmaier, Anton |
Pubbl/distr/stampa | Regensburg : Fak. Math. Univ. Regensburg, 1989 |
Descrizione fisica | 95 p. ; 29 cm. |
Disciplina | 519.23 |
Collana | Regensburger mathematische schriften, ISSN 01799746 ; 22 |
Soggetto topico |
Brownian motion
Diffusion processes Markov processes Stochastic analysis |
ISBN | 3882461551 |
Classificazione |
AMS 58G32
AMS 60J AMS 60J65 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | ge |
Record Nr. | UNISALENTO-b10745415 |
Thalmaier, Anton
![]() |
||
Regensburg : Fak. Math. Univ. Regensburg, 1989 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Brownian Brownian motion-I / / N. Chernov, D. Dolgopyat |
Autore | Chernov Nikolai <1956-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2009 |
Descrizione fisica | 1 online resource (208 p.) |
Disciplina | 519.2/33 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Diffusion processes
Brownian movements Limit theorems (Probability theory) |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-0533-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""1.1. The model""; ""1.2. The container""; ""1.3. Billiard approximations""; ""Chapter 2. Statement of results""; ""2.1. Heavy disk in 'equilibrium' (linear motion)""; ""2.2. Heavy disk at rest (slow acceleration)""; ""2.3. Heavy disk of small size""; ""2.4. Comparison to previous works""; ""Chapter 3. Plan of the proofs""; ""3.1. General strategy""; ""3.2. Precise definitions""; ""3.3. Key technical results""; ""Chapter 4. Standard pairs and equidistribution""; ""4.1. Unstable vectors""; ""4.2. Unstable curves""
""6.2. Structure of the proofs""""6.3. Short term moment estimates for V""; ""6.4. Moment estimates�a priori bounds""; ""6.5. Tightness""; ""6.6. Second moment""; ""6.7. Martingale property""; ""6.8. Transition to continuous time""; ""6.9. Uniqueness for stochastic differential equations""; ""Chapter 7. Fast slow particle""; ""Chapter 8. Small large particle""; ""Chapter 9. Open problems""; ""9.1. Collisions of the massive disk with the wall""; ""9.2. Longer time scales""; ""9.3. Stadia and the piston problem""; ""9.4. Finitely many particles""; ""9.5. Growing number of particles"" ""9.6. Particles of positive size""""Appendix A. Statistical properties of dispersing billiards""; ""A.1. Decay of correlations: overview""; ""A.2. Decay of correlations: extensions""; ""A.3. Large deviations""; ""A.4. Moderate deviations""; ""A.5. Nonsingularity of diffusion matrix""; ""A.6. Asymptotics of diffusion matrix""; ""Appendix B. Growth and distortion in dispersing billiards""; ""B.1. Regularity of H-curves""; ""B.2. Invariant Section Theorem""; ""B.3. The function space R""; ""Appendix C. Distortion bounds for two particle system""; ""Bibliography""; ""Index"" |
Record Nr. | UNINA-9910480616203321 |
Chernov Nikolai <1956->
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , 2009 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Brownian Brownian motion-I / / N. Chernov, D. Dolgopyat |
Autore | Chernov Nikolai <1956-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2009 |
Descrizione fisica | 1 online resource (208 p.) |
Disciplina | 519.2/33 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Diffusion processes
Brownian movements Limit theorems (Probability theory) |
ISBN | 1-4704-0533-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""1.1. The model""; ""1.2. The container""; ""1.3. Billiard approximations""; ""Chapter 2. Statement of results""; ""2.1. Heavy disk in 'equilibrium' (linear motion)""; ""2.2. Heavy disk at rest (slow acceleration)""; ""2.3. Heavy disk of small size""; ""2.4. Comparison to previous works""; ""Chapter 3. Plan of the proofs""; ""3.1. General strategy""; ""3.2. Precise definitions""; ""3.3. Key technical results""; ""Chapter 4. Standard pairs and equidistribution""; ""4.1. Unstable vectors""; ""4.2. Unstable curves""
""6.2. Structure of the proofs""""6.3. Short term moment estimates for V""; ""6.4. Moment estimates�a priori bounds""; ""6.5. Tightness""; ""6.6. Second moment""; ""6.7. Martingale property""; ""6.8. Transition to continuous time""; ""6.9. Uniqueness for stochastic differential equations""; ""Chapter 7. Fast slow particle""; ""Chapter 8. Small large particle""; ""Chapter 9. Open problems""; ""9.1. Collisions of the massive disk with the wall""; ""9.2. Longer time scales""; ""9.3. Stadia and the piston problem""; ""9.4. Finitely many particles""; ""9.5. Growing number of particles"" ""9.6. Particles of positive size""""Appendix A. Statistical properties of dispersing billiards""; ""A.1. Decay of correlations: overview""; ""A.2. Decay of correlations: extensions""; ""A.3. Large deviations""; ""A.4. Moderate deviations""; ""A.5. Nonsingularity of diffusion matrix""; ""A.6. Asymptotics of diffusion matrix""; ""Appendix B. Growth and distortion in dispersing billiards""; ""B.1. Regularity of H-curves""; ""B.2. Invariant Section Theorem""; ""B.3. The function space R""; ""Appendix C. Distortion bounds for two particle system""; ""Bibliography""; ""Index"" |
Record Nr. | UNINA-9910666514203321 |
Chernov Nikolai <1956->
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , 2009 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|