Connections, curvature, and cohomology . Volume 3 Cohomology of principal bundles and homogeneous spaces [[electronic resource] /] / Werner Greub, Stephen Halperin, and Ray Vanstone |
Autore | Greub Werner Hildbert <1925-> |
Pubbl/distr/stampa | New York, : Academic Press, 1976 |
Descrizione fisica | 1 online resource (617 p.) |
Disciplina | 516.36 |
Altri autori (Persone) |
HalperinStephen
VanstoneRay |
Soggetto topico |
Connections (Mathematics)
Curvature Homology theory |
Soggetto genere / forma | Electronic books. |
ISBN |
1-281-46686-7
9786611466862 0-08-087927-6 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Contents; Introduction; Chapter 0. Algebraic Preliminaries; PART 1; Chapter I. Spectral Sequences; 1. Filtrations; 2. Spectral sequences; 3. Graded filtered differential spaces; 4. Graded filtered differential algebras; 5. Differential couples; Chapter II. Koszul Complexes of P-Spaces and P-Algebras; 1. P-spaces and P-algebras; 2. Isomorphism theorems; 3. The Poincaré-Koszul series; 4. Structure theorems; 5. Symmetric P-algebras; 6. Essential P-algebras; Chapter III. Koszul Complexes of P-Differential Algebras; 1. P-differential algebras; 2. Tensor difference; 3. Isomorphism theorems
4. Structure theorems5. Cohomology diagram of a tensor difference; 6. Tensor difference with a symmetric P-algebra; 7. Equivalent and c-equivalent (P, d)-algebras; PART 2; Chapter IV. Lie Algebras and Differential Spaces; 1. Lie algebras; 2. Representation of a Lie algebra in a differential space; Chapter V. Cohomology of Lie Algebras and Lie Groups; 1. Exterior algebra over a Lie algebra; 2. Unimodular Lie algebras; 3. Reductive Lie algebras; 4. The structure theorem for (.E). =0; 5. The structure of (.E*).=0; 6. Duality theorems; 7. Cohomology with coefficients in a graded Lie module 8. Applications to Lie groupsChapter VI. The Weil Algebra; 1. The Weil algebra; 2. The canonical map PE; 3. The distinguished transgression; 4. The structure theorem for (VE*).=0; 5. The structure theorem for (VE).=0, and duality; 6. Cohomology of the classical Lie algebras; 7. The compact classical Lie groups; Chapter VII. Operation of a Lie Algebra in a Graded Differential Algebra; 1. Elementary properties of an operation; 2. Examples of operations; 3. The structure homomorphism; 4. Fibre projection; 5. Operation of a graded vector space on a graded algebra; 6. Transformation groups Chapter VIII. Algebraic Connections and Principal Bundles1. Definition and examples; 2. The decomposition of R; 3. Geometric definition of an operation; 4. The Weil homomorphism; 5. Principal bundles; Chapter IX. Cohomology of Operations and Principal Bundles; 1. The filtration of an operation; 2. The fundamental theorem; 3. Applications of the fundamental theorem; 4. The distinguished transgression; 5. The classification theorem; 6. Principal bundles; 7. Examples; Chapter X. Subalgebras; 1. Operation of a subalgebra; 2. The cohomology of (.E*)iF=0,.F=0; 3. The structure of the algebra H(E/F) 4. Cartan pairs5. Subalgebras noncohomologous to zero; 6. Equal rank pairs; 7. Symmetric pairs; 8. Relative Poincaré duality; 9. Symplectic metrics; Chapter XI. Homogeneous Spaces; 1. The cohomology of a homogeneous space; 2. The structure of H(G/K); 3. The Weyl group; 4. Examples of homogeneous spaces; 5. Non-Cartan pairs; Chapter XII. Operation of a Lie Algebra Pair; 1. Basic properties; 2. The cohomology of BF; 3. Isomorphism of the cohomology diagrams; 4. Applications of the fundamental theorem; 5. Bundles with fibre a homogeneous space Appendix A. Characteristic Coefficients and the Pfaffian |
Record Nr. | UNINA-9910307293603321 |
Greub Werner Hildbert <1925->
![]() |
||
New York, : Academic Press, 1976 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Connections, curvature, and cohomology . Volume 2 Lie groups, principal bundles, and characteristic classes [[electronic resource] /] / [by] Werner Greub, Stephen Halperin, and Ray Vanstone |
Autore | Greub Werner Hildbert <1925-> |
Pubbl/distr/stampa | New York, : Academic Press, 1973 |
Descrizione fisica | 1 online resource (567 p.) |
Disciplina |
510.8
514.2 516.36 |
Altri autori (Persone) |
HalperinStephen
VanstoneRay |
Collana | Pure and applied mathematics (Academic Press) |
Soggetto topico |
Connections (Mathematics)
Curvature Homology theory |
Soggetto genere / forma | Electronic books. |
ISBN |
1-281-74393-3
9786611743932 0-08-087361-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; Connections, Curvature, and Cohomology, Volume II; Copyright Page; Contents; Preface; Introduction; Contents of Volumes I and III; Chapter 0. Algebraic and Analytic Preliminaries; 1. Linear algebra; 2. Homological algebra; 3. Analysis and topology; 4. Summary of volume I; Chapter I. Lie Groups; 1. Lie algebra of a Lie group; 2. The exponential map; 3. Representations; 4. Abelian Lie groups; 5. Integration on compact Lie groups; Problems; Chapter II. Subgroups and Homogeneous Spaces; 1. Lie subgroups; 2. Linear groups; 3. Homogeneous spaces
4. The bundle structure of a homogeneous space5. Maximal tori; Problems; Chapter III. Transformation Groups; 1. Action of a Lie group; 2. Orbits of an action; 3. Vector fields; 4. Differential forms; 5. Invariant cross-sections; Problems; Chapter IV. Invariant Cohomology; 1. Group actions; 2. Left invariant forms on a Lie group; 3. Invariant cohomology of Lie groups; 4. Cohomology of compact connected Lie groups; 5. Homogeneous spaces; Problems; Chapter V. Bundles with Structure Group; 1. Principal bundles; 2. Associated bundles; 3. Bundles and homogeneous spaces; 4. The Grassmannians 5. The Stiefel manifolds6. The cohomology of the Stiefel manifolds and the classical groups; Problems; Chapter VI. Principal Connections and the Weil Homomorphism; 1. Vector fields; 2. Differential forms; 3. Principal connections; 4. The covariant exterior derivative; 5. Curvature; 6. The Weil homomorphism; 7. Special cases; 8. Homogeneous spaces; Problems; Chapter VII. Linear Connections; 1. Bundle-valued differential forms; 2. Examples; 3. Linear connections; 4. Curvature; 5. Parallel translation; 6. Horizontal subbundles; 7. Riemannian connections; 8. Sphere maps; Problems Chapter VIII. Characteristic Homomorphism for E-bundles1. E-bundles; 2. E-connections; 3. Invariant subbundles; 4. Characteristic homomorphism; 5. Examples; 6. E-bundles with compact carrier; 7. Associated principal bundles; 8. Characteristic homomorphism for associated vector bundles; Problems; Chapter IX. Pontrjagin, Pfaffian, and Chern Classes; 1. The modified characteristic homomorphism for real E-bundles; 2. Real bundles: Pontrjagin and trace classes; 3. Pseudo-Riemannian bundles: Pontrjagin classes and Pfaffian class; 4. Complex vector bundles; 5. Chern classes; Problems Chapter X. The Gauss-Bonnet-Chern TheoremProblems; Appendix A. Characteristic Coefficients and the Pfaffian; 1. Characteristic and trace coefficients; 2. Inner product spaces; References; Bibliography; Chapters I-V; Chapters VI-X; Bibliography-Books; Notation Index; Index |
Record Nr. | UNINA-9910307304803321 |
Greub Werner Hildbert <1925->
![]() |
||
New York, : Academic Press, 1973 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Connections, curvature, and cohomology / Werner Greub, Stephen Halperin, and Ray Vanstone |
Autore | Greub, Werner Hildbert |
Pubbl/distr/stampa | New York : Academic Press, 1972-76 |
Descrizione fisica | 3 v. ; 24 cm |
Disciplina |
514.23
516.36 |
Altri autori (Persone) |
Halperin, Stephenauthor
Vanstone, Ray |
Collana |
Pure and applied mathematics. A series of monographs & textbooks, [Academic Press] 0079-8169 ; 47/I
Pure and applied mathematics. A series of monographs & textbooks, [Academic Press] 0079-8169 ; 47/II Pure and applied mathematics. A series of monographs & textbooks, [Academic Press] 0079-8169 ; 47/III |
Soggetto topico |
Connections
Curvature Differential geometry Homology theory |
Classificazione |
AMS 53-XX
AMS 57-XX |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-b10756632 |
Greub, Werner Hildbert
![]() |
||
New York : Academic Press, 1972-76 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Curvature : a variational approach / / A. Agrachev, D. Barilari, L. Rizzi |
Autore | Agrachev A. |
Pubbl/distr/stampa | Providence, RI : , : American Mathematical Society, , [2018] |
Descrizione fisica | 1 online resource (v, 142 pages) |
Disciplina | 516.362 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Curvature
Riemannian manifolds Geometry, Differential |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-4913-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910479865203321 |
Agrachev A.
![]() |
||
Providence, RI : , : American Mathematical Society, , [2018] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Curvature : a variational approach / / A. Agrachev, D. Barilari, L. Rizzi |
Autore | Agrachev A. |
Pubbl/distr/stampa | Providence, RI : , : American Mathematical Society, , [2018] |
Descrizione fisica | 1 online resource (v, 142 pages) |
Disciplina | 516.362 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Curvature
Riemannian manifolds Geometry, Differential |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-4913-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910538812203321 |
Agrachev A.
![]() |
||
Providence, RI : , : American Mathematical Society, , [2018] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Curvature and Betti Numbers. (AM-32), Volume 32 / / Kentaro Yano, Salomon Trust |
Autore | Trust Salomon |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (205 pages) |
Disciplina |
513.7
516.7* |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Curvature
Geometry, Differential |
Soggetto genere / forma | Electronic books. |
Soggetto non controllato |
Abelian integral
Affine connection Algebraic operation Almost periodic function Analytic function Arc length Betti number Coefficient Compact space Complex analysis Complex conjugate Complex dimension Complex manifold Conservative vector field Constant curvature Constant function Continuous function Convex set Coordinate system Covariance and contravariance of vectors Covariant derivative Curvature Derivative Differential form Differential geometry Dimension (vector space) Dimension Einstein manifold Equation Euclidean domain Euclidean geometry Euclidean space Existential quantification Geometry Hausdorff space Hypersphere Killing vector field Kähler manifold Lie group Manifold Metric tensor (general relativity) Metric tensor Mixed tensor One-parameter group Orientability Partial derivative Periodic function Permutation Quantity Ricci curvature Riemannian manifold Scalar (physics) Sectional curvature Self-adjoint Special case Subset Summation Symmetric tensor Symmetrization Tensor algebra Tensor calculus Tensor field Tensor Theorem Torsion tensor Two-dimensional space Uniform convergence Uniform space Unit circle Unit sphere Unit vector Vector field |
ISBN | 1-4008-8220-6 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Preface -- Contents -- Chapter I. Riemannian Manifold -- Chapter II. Harmonic and Killing Vectors -- Chapter III. Harmonic and Killing Tensors -- Chapter IV. Harmonic and Killing Tensors in Flat Manifolds -- Chapter V. Deviation from Flatness -- Chapter VI. Semi-simple Group Spaces -- Chapter VII. Pseudo-harmonic Tensors and Pseudo-Killing Tensors in Metric Manifolds with Torsion -- Chapter VIII. Kaehler Manifold -- Chapter IX. Supplements / Bochner, S. -- Bibliography -- Backmatter |
Record Nr. | UNINA-9910154748603321 |
Trust Salomon
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Curvature and characteristic classes / Johan L. Dupont |
Autore | Dupont, Johan Louis |
Pubbl/distr/stampa | Berlin ; Heidelberg : Springer-Verlag, 1978 |
Descrizione fisica | vii, 175 p. ; 25 cm. |
Disciplina | 514.72 |
Collana | Lecture notes in mathematics, 0075-8434 ; 640 |
Soggetto topico |
Characteristic classes
Curvature Differential forms Invariants |
ISBN | 3540086633 |
Classificazione |
AMS 57R20
AMS 58A10 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-b10759360 |
Dupont, Johan Louis
![]() |
||
Berlin ; Heidelberg : Springer-Verlag, 1978 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Curvature and homology [[electronic resource] /] / Samuel I. Goldberg |
Autore | Goldberg Samuel I |
Pubbl/distr/stampa | New York, : Dover Publications, 1982 |
Descrizione fisica | 1 online resource (335 p.) |
Disciplina | 516.3/62 |
Collana | Pure and applied mathematics |
Soggetto topico |
Curvature
Homology theory Geometry, Riemannian |
Soggetto genere / forma | Electronic books. |
ISBN |
1-281-76631-3
9786611766313 0-08-087323-5 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; Curvature and Homology; Copyright Page; Contents; Preface; Notation Index; Introduction; CHAPTER I. RIEMANNIAN MANIFOLDS; 1.1 Differentiable manifolds; 1.2 Tensors; 1.3 Tensor bundles; 1.4 Differential forms; 1.5 Submanifolds; 1.6 Integration of differential forms; 1.7 Affine connections; 1.8 Bundle of frames; 1.9 Riemannian geometry; 1.10 Sectional curvature; 1.11 Geodesic coordinates; Exercises; CHAPTER II. TOPOLOGY OF DIFFERENTIABLE MANI- FOLDS; 2.1 Complexes; 2.2 Singular homology; 2.3 Stokes' theorem; 2.4 De Rham cohomology; 2.5 Periods
2.6 Decomposition theorem for compact Riemann surfaces2.7 The star isomorphism; 2.8 Harmonic forms. The operators d and ?; 2.9 Orthogonality relations; 2.10 Decomposition theorem for compact Riemannian manifolds; 2.11 Fundamental theorem; 2.12 Explicit expressions for d, d and ?; Exercises; CHAPTER III. CURVATURE AND HOMOLOGY OF RIEMANNIAN MANIFOLDS; 3.1 Some contributions of S. Bochner; 3.2 Curvature and betti numbers; 3.3 Derivations in a graded algebra; 3.4 Infinitesimal transformations; 3.5 The derivation ?(X); 3.6 Lie transformation groups; 3.7 Conformal transformations 3.8 Conformal transformations (continued)3.9 Conformally flat manifolds; 3.10 Affline collineations; 3.11 Projective transformations; Exercises; CHAPTER IV. COMPACT LIE GROUPS; 4.1 The Grassman algebra of a Lie group; 4.2 Invariant differential forms; 4.3 Local geometry of a compact semi-simple Lie group; 4.4 Harmonic forms on a compact semi-simple Lie group; 4.5 Curvature and betti numbers of a compact semi-simple Lie group G; 4.6 Determination of the betti numbers of the simple Lie groups; Exercises; CHAPTER V. COMPLEX MANIFOLDS; 5.1 Complex manifolds; 5.2 Almost complex manifolds 5.3 Local hermitian geometry5.4 The operators L and A; 5.5 Kaehler manifolds; 5.6 Topology of a Kaehler manifold; 5.7 Effective forms on an hermitian manifold; 5.8 Holomorphic maps. Induced structures; 5.9 Examples of Kaehler manifolds; Exercises; CHAPTER VI. CURVATURE AND HOMOLOGY OF KAEHLER MANIFOLDS; 6.1 Holomorphic curvature; 6.2 The effect of positive Ricci curvature; 6.3 Deviation from constant holomorphic curvature; 6.4 Kaehler-Einstein spaces; 6.5 Holomorphic tensor fields; 6.6 Complex parallelisable manifolds; 6.7 Zero curvature; 6.8 Compact complex parallelisable manifolds 6.9 A topological characterization of compact complex parallelisable manifolds6.10 d"-cohomology; 6.11 Complex imbedding; 6.12 Euler characteristic; 6.13 The effect of sufficiently many holomorphic differentials; 6.14 The vanishing theorems of Kodaira; Exercises; CHAPTER VII. GROUPS OF TRANSFORMATIONS OF KAEHLER AND ALMOST KAEHLER MANIFOLDS; 7.1 Infinitesimal holomorphic transformations; 7.2 Groups of holomorphic transformations; 7.3 Kaehler manifolds with constant Ricci scalar curvature; 7.4 A theorem on transitive groups of holomorphic transformations 7.5 Infinitesimal conformal transformations. Automorphisms |
Record Nr. | UNINA-9910307293003321 |
Goldberg Samuel I
![]() |
||
New York, : Dover Publications, 1982 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Curvature and homology / Samuel I. Goldberg |
Autore | Goldberg, Samuel I. |
Pubbl/distr/stampa | New York : Academic Press, 1962 |
Descrizione fisica | 315 p. : ill. ; 24 cm. |
Disciplina | 516.36 |
Collana | Pure and applied mathematics. A series of monographs & textbooks [Academic Press], 0079-8169 ; 11 |
Soggetto topico |
Curvature
Homology theory Riemann surfaces |
Classificazione | AMS 58-01 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-b10759372 |
Goldberg, Samuel I.
![]() |
||
New York : Academic Press, 1962 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Degree theory of immersed hypersurfaces / / Harold Rosenberg, Graham Smith |
Autore | Rosenberg H (Harold), <1941-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2020 |
Descrizione fisica | 1 online resource (74 pages) |
Disciplina | 516.3/73 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Topological degree
Riemannian manifolds Hypersurfaces Curvature |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-6148-X |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910480893803321 |
Rosenberg H (Harold), <1941->
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , 2020 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|