The advanced theory of statistics / Maurice Kendall and Alan Stuart |
Autore | Kendall, Maurice |
Edizione | [4th ed.] |
Pubbl/distr/stampa | London : Charles Griffin and Co., 1977 |
Descrizione fisica | 3 v. ; 26 cm. |
Altri autori (Persone) | Stuart, Alanauthor |
Soggetto topico | Mathematical statistics |
Classificazione |
510.62
519.5 QA276 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991000800959707536 |
Kendall, Maurice
![]() |
||
London : Charles Griffin and Co., 1977 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Basic statistics for social research [[electronic resource] /] / Robert A. Hanneman, Augustine J. Kposowa, Mark Riddle |
Autore | Hanneman Robert |
Pubbl/distr/stampa | San Francisco, California : , : Jossey-Bass, , c2013 |
Descrizione fisica | 1 online resource (xvii, 530 pages) : illustations |
Disciplina | 519.5 |
Altri autori (Persone) |
KposowaAugustine J
RiddleMark <1957-> |
Soggetto topico | Social sciences - Statistical methods |
ISBN |
1-118-23415-4
1-283-83501-0 1-118-22055-2 |
Classificazione |
361.9
519.5 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | pt. I. Univariate description -- pt. II. Inference and hypothesis testing -- pt. III. Association and prediction. |
Record Nr. | UNINA-9910795976203321 |
Hanneman Robert
![]() |
||
San Francisco, California : , : Jossey-Bass, , c2013 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Data and error analysis : in the introductory physics laboratory / W. Lichten |
Autore | Lichten, W. |
Pubbl/distr/stampa | Boston : Allyn and Bacon Inc., 1988 |
Descrizione fisica | xiv, 172 p. : ill. ; 23 cm. |
Soggetto topico |
Error analysis
Statistics |
ISBN | 0205111939 |
Classificazione |
53(022)
53.0.6 519.5 QA276.12 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991000882289707536 |
Lichten, W.
![]() |
||
Boston : Allyn and Bacon Inc., 1988 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Dizionario di statistica / Eugene Morice ; con la collaborazione di M. Bertraud ; prefazione all'edizione italiana di Luigi Muracchini |
Autore | Morice, Eugene |
Pubbl/distr/stampa | Torino : ISEDI, [1971] |
Descrizione fisica | XXV, 258 p. ; 23 cm. |
Disciplina | 310 |
Altri autori (Persone) |
Cossarini, Maria Gilda
Bertraud, Monique Muracchini, Luigi |
Collana | Dizionari e manuali ; 4 |
Soggetto topico | Statistica |
Classificazione | 519.5 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | ita |
Record Nr. | UNISALENTO-991000896769707536 |
Morice, Eugene
![]() |
||
Torino : ISEDI, [1971] | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Examples and problems in mathematical statistics / / Shelemyahu Zacks |
Autore | Zacks Shelemyahu <1932-> |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , 2014 |
Descrizione fisica | 1 online resource (654 pages) |
Disciplina | 519.5 |
Collana | Wiley series in probability and statistics |
Soggetto topico |
Mathematical statistics
Statistics |
ISBN |
9781118605837
1118605837 9781118606001 1118606000 |
Classificazione |
417
519.5 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Examples and Problems in Mathematical Statistics -- Contents -- Preface -- List of Random Variables -- List of Abbreviations -- 1 Basic Probability Theory -- PART I: THEORY -- 1.1 OPERATIONS ON SETS -- 1.2 ALGEBRA AND σ-FIELDS -- 1.3 PROBABILITY SPACES -- 1.4 CONDITIONAL PROBABILITIES AND INDEPENDENCE -- 1.5 RANDOM VARIABLES AND THEIR DISTRIBUTIONS -- 1.6 THE LEBESGUE AND STIELTJES INTEGRALS -- 1.6.1 General Definition of Expected Value: The Lebesgue Integral -- 1.6.2 The Stieltjes-Riemann Integral -- 1.6.3 Mixtures of Discrete and Absolutely Continuous Distributions -- 1.6.4 Quantiles of Distributions -- 1.6.5 Transformations -- 1.7 JOINT DISTRIBUTIONS, CONDITIONAL DISTRIBUTIONS AND INDEPENDENCE -- 1.7.1 Joint Distributions -- 1.7.2 Conditional Expectations: General Definition -- 1.7.3 Independence -- 1.8 MOMENTS AND RELATED FUNCTIONALS -- 1.9 MODES OF CONVERGENCE -- 1.10 WEAK CONVERGENCE -- 1.11 LAWS OF LARGE NUMBERS -- 1.11.1 The Weak Law of Large Numbers (WLLN) -- 1.11.2 The Strong Law of Large Numbers (SLLN) -- 1.12 CENTRAL LIMIT THEOREM -- 1.13 MISCELLANEOUS RESULTS -- 1.13.1 Law of the Iterated Logarithm -- 1.13.2 Uniform Integrability -- 1.13.3 Inequalities -- 1.13.4 The Delta Method -- 1.13.5 The Symbols op and Op -- 1.13.6 The Empirical Distribution and Sample Quantiles -- PART II: EXAMPLES -- PART III: PROBLEMS -- PART IV: SOLUTIONS TO SELECTED PROBLEMS -- 2 Statistical Distributions -- PART I: THEORY -- 2.1 INTRODUCTORY REMARKS -- 2.2 FAMILIES OF DISCRETE DISTRIBUTIONS -- 2.2.1 Binomial Distributions -- 2.2.2 Hypergeometric Distributions -- 2.2.3 Poisson Distributions -- 2.2.4 Geometric, Pascal, and Negative Binomial Distributions -- 2.3 SOME FAMILIES OF CONTINUOUS DISTRIBUTIONS -- 2.3.1 Rectangular Distributions -- 2.3.2 Beta Distributions -- 2.3.3 Gamma Distributions -- 2.3.4 Weibull and Extreme Value Distributions.
2.3.5 Normal Distributions -- 2.3.6 Normal Approximations -- 2.4 TRANSFORMATIONS -- 2.4.1 One-to-One Transformations of Several Variables -- 2.4.2 Distribution of Sums -- 2.4.3 Distribution of Ratios -- 2.5 VARIANCES AND COVARIANCES OF SAMPLE MOMENTS -- 2.6 DISCRETE MULTIVARIATE DISTRIBUTIONS -- 2.6.1 The Multinomial Distribution -- 2.6.2 Multivariate Negative Binomial -- 2.6.3 Multivariate Hypergeometric Distributions -- 2.7 MULTINORMAL DISTRIBUTIONS -- 2.7.1 Basic Theory -- 2.7.2 Distribution of Subvectors and Distributions of Linear Forms -- 2.7.3 Independence of Linear Forms -- 2.8 DISTRIBUTIONS OF SYMMETRIC QUADRATIC FORMS OF NORMAL VARIABLES -- 2.9 INDEPENDENCE OF LINEAR AND QUADRATIC FORMS OF NORMAL VARIABLES -- 2.10 THE ORDER STATISTICS -- 2.11 t-DISTRIBUTIONS -- 2.12 F-DISTRIBUTIONS -- 2.13 THE DISTRIBUTION OF THE SAMPLE CORRELATION -- 2.14 EXPONENTIAL TYPE FAMILIES -- 2.15 APPROXIMATING THE DISTRIBUTION OF THE SAMPLE MEAN: EDGEWORTH AND SADDLEPOINT APPROXIMATIONS -- 2.15.1 Edgeworth Expansion -- 2.15.2 Saddlepoint Approximation -- PART II: EXAMPLES -- PART III: PROBLEMS -- PART IV: SOLUTIONS TO SELECTED PROBLEMS -- 3 Sufficient Statistics and the Information in Samples -- PART I: THEORY -- 3.1 INTRODUCTION -- 3.2 DEFINITION AND CHARACTERIZATION OF SUFFICIENT STATISTICS -- 3.2.1 Introductory Discussion -- 3.2.2 Theoretical Formulation -- 3.3 LIKELIHOOD FUNCTIONS AND MINIMAL SUFFICIENT STATISTICS -- 3.4 SUFFICIENT STATISTICS AND EXPONENTIAL TYPE FAMILIES -- 3.5 SUFFICIENCY AND COMPLETENESS -- 3.6 SUFFICIENCY AND ANCILLARITY -- 3.7 INFORMATION FUNCTIONS AND SUFFICIENCY -- 3.7.1 The Fisher Information -- 3.7.2 The Kullback-Leibler Information -- 3.8 THE FISHER INFORMATION MATRIX -- 3.9 SENSITIVITY TO CHANGES IN PARAMETERS -- 3.9.1 The Hellinger Distance -- PART II: EXAMPLES -- PART III: PROBLEMS -- PART IV: SOLUTIONS TO SELECTED PROBLEMS. 4 Testing Statistical Hypotheses -- PART I: THEORY -- 4.1 THE GENERAL FRAMEWORK -- 4.2 THE NEYMAN-PEARSON FUNDAMENTAL LEMMA -- 4.3 TESTING ONE-SIDED COMPOSITE HYPOTHESES IN MLR MODELS -- 4.4 TESTING TWO-SIDED HYPOTHESES IN ONE-PARAMETER EXPONENTIAL FAMILIES -- 4.5 TESTING COMPOSITE HYPOTHESES WITH NUISANCE PARAMETERS-UNBIASED TESTS -- 4.6 LIKELIHOOD RATIO TESTS -- 4.6.1 Testing in Normal Regression Theory -- 4.6.2 Comparison of Normal Means: The Analysis of Variance -- 4.7 THE ANALYSIS OF CONTINGENCY TABLES -- 4.7.1 The Structure of Multi-Way Contingency Tables and the Statistical Model -- 4.7.2 Testing the Significance of Association -- 4.7.3 The Analysis of Tables -- 4.7.4 Likelihood Ratio Tests for Categorical Data -- 4.8 SEQUENTIAL TESTING OF HYPOTHESES -- 4.8.1 The Wald Sequential Probability Ratio Test -- PART II: EXAMPLES -- PART III: PROBLEMS -- PART IV: SOLUTIONS TO SELECTED PROBLEMS -- 5 Statistical Estimation -- PART I: THEORY -- 5.1 GENERAL DISCUSSION -- 5.2 UNBIASED ESTIMATORS -- 5.2.1 General Definition and Example -- 5.2.2 Minimum Variance Unbiased Estimators -- 5.2.3 The Cramér-Rao Lower Bound for the One-Parameter Case -- 5.2.4 Extension of the Cramér-Rao Inequality to Multiparameter Cases -- 5.2.5 General Inequalities of the Cramér-Rao Type -- 5.3 THE EFFICIENCY OF UNBIASED ESTIMATORS IN REGULAR CASES -- 5.4 BEST LINEAR UNBIASED AND LEAST-SQUARES ESTIMATORS -- 5.4.1 BLUEs of the Mean -- 5.4.2 Least-Squares and BLUEs in Linear Models -- 5.4.3 Best Linear Combinations of Order Statistics -- 5.5 STABILIZING THE LSE: RIDGE REGRESSIONS -- 5.6 MAXIMUM LIKELIHOOD ESTIMATORS -- 5.6.1 Definition and Examples -- 5.6.2 MLEs in Exponential Type Families -- 5.6.3 The Invariance Principle -- 5.6.4 MLE of the Parameters of Tolerance Distributions -- 5.7 EQUIVARIANT ESTIMATORS -- 5.7.1 The Structure of Equivariant Estimators. 5.7.2 Minimum MSE Equivariant Estimators -- 5.7.3 Minimum Risk Equivariant Estimators -- 5.7.4 The Pitman Estimators -- 5.8 ESTIMATING EQUATIONS -- 5.8.1 Moment-Equations Estimators -- 5.8.2 General Theory of Estimating Functions -- 5.9 PRETEST ESTIMATORS -- 5.10 ROBUST ESTIMATION OF THE LOCATION AND SCALE PARAMETERS OF SYMMETRIC DISTRIBUTIONS -- PART II: EXAMPLES -- PART III: PROBLEMS -- PART IV: SOLUTIONS OF SELECTED PROBLEMS -- 6 Confidence and Tolerance Intervals -- PART I: THEORY -- 6.1 GENERAL INTRODUCTION -- 6.2 THE CONSTRUCTION OF CONFIDENCE INTERVALS -- 6.3 OPTIMAL CONFIDENCE INTERVALS -- 6.4 TOLERANCE INTERVALS -- 6.5 DISTRIBUTION FREE CONFIDENCE AND TOLERANCE INTERVALS -- 6.6 SIMULTANEOUS CONFIDENCE INTERVALS -- 6.7 TWO-STAGE AND SEQUENTIAL SAMPLING FOR FIXED WIDTH CONFIDENCE INTERVALS -- PART II: EXAMPLES -- PART III: PROBLEMS -- PART IV: SOLUTION TO SELECTED PROBLEMS -- 7 Large Sample Theory for Estimation and Testing -- PART I: THEORY -- 7.1 CONSISTENCY OF ESTIMATORS AND TESTS -- 7.2 CONSISTENCY OF THE MLE -- 7.3 ASYMPTOTIC NORMALITY AND EFFICIENCY OF CONSISTENT ESTIMATORS -- 7.4 SECOND-ORDER EFFICIENCY OF BAN ESTIMATORS -- 7.5 LARGE SAMPLE CONFIDENCE INTERVALS -- 7.6 EDGEWORTH AND SADDLEPOINT APPROXIMATIONS TO THE DISTRIBUTION OF THE MLE: ONE-PARAMETER CANONICAL EXPONENTIAL FAMILIES -- 7.7 LARGE SAMPLE TESTS -- 7.8 PITMAN'S ASYMPTOTIC EFFICIENCY OF TESTS -- 7.9 ASYMPTOTIC PROPERTIES OF SAMPLE QUANTILES -- PART II: EXAMPLES -- PART III: PROBLEMS -- PART IV: SOLUTION OF SELECTED PROBLEMS -- 8 Bayesian Analysis in Testing and Estimation -- PART I: THEORY -- 8.1 THE BAYESIAN FRAMEWORK -- 8.1.1 Prior, Posterior, and Predictive Distributions -- 8.1.2 Noninformative and Improper Prior Distributions -- 8.1.3 Risk Functions and Bayes Procedures -- 8.2 BAYESIAN TESTING OF HYPOTHESIS -- 8.2.1 Testing Simple Hypothesis. 8.2.2 Testing Composite Hypotheses -- 8.2.3 Bayes Sequential Testing of Hypotheses -- 8.3 BAYESIAN CREDIBILITY AND PREDICTION INTERVALS -- 8.3.1 Credibility Intervals -- 8.3.2 Prediction Intervals -- 8.4 BAYESIAN ESTIMATION -- 8.4.1 General Discussion and Examples -- 8.4.2 Hierarchical Models -- 8.4.3 The Normal Dynamic Linear Model -- 8.5 APPROXIMATION METHODS -- 8.5.1 Analytical Approximations -- 8.5.2 Numerical Approximations -- 8.6 EMPIRICAL BAYES ESTIMATORS -- PART II: EXAMPLES -- PART III: PROBLEMS -- PART IV: SOLUTIONS OF SELECTED PROBLEMS -- 9 Advanced Topics in Estimation Theory -- PART I: THEORY -- 9.1 MINIMAX ESTIMATORS -- 9.2 MINIMUM RISK EQUIVARIANT, BAYES EQUIVARIANT, AND STRUCTURAL ESTIMATORS -- 9.2.1 Formal Bayes Estimators for Invariant Priors -- 9.2.2 Equivariant Estimators Based on Structural Distributions -- 9.3 THE ADMISSIBILITY OF ESTIMATORS -- 9.3.1 Some Basic Results -- 9.3.2 The Inadmissibility of Some Commonly Used Estimators -- 9.3.3 Minimax and Admissible Estimators of the Location Parameter -- 9.3.4 The Relationship of Empirical Bayes and Stein-Type Estimators of the Location Parameter in the Normal Case -- PART II: EXAMPLES -- PART III: PROBLEMS -- PART IV: SOLUTIONS OF SELECTED PROBLEMS -- References -- Author Index -- Subject Index -- WILEY SERIES IN PROBABILITY AND STATISTICS. |
Record Nr. | UNINA-9910973614803321 |
Zacks Shelemyahu <1932->
![]() |
||
Hoboken, New Jersey : , : Wiley, , 2014 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Introduction to mathematical statistics / P.G. Hoel |
Autore | Hoel, Paul G. |
Pubbl/distr/stampa | New York : John Wiley & Sons, 1971 |
Descrizione fisica | x, 409 p. : ill. ; 24 cm. |
Soggetto topico | Mathematical analysis |
Classificazione |
510.60
510.62 519.5 QA276 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991001021299707536 |
Hoel, Paul G.
![]() |
||
New York : John Wiley & Sons, 1971 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Introduction to statistical theory / P. Hoel, S. Port and C. Stone |
Autore | Hoel, Paul G. |
Pubbl/distr/stampa | Boston : Houghton Mifflin Company, 1971 |
Descrizione fisica | 237 p. : ill. ; 24 cm. |
Altri autori (Persone) |
Port, Sidney C.
Stone, Charles J. |
Soggetto topico | Mathematical statistics |
Classificazione |
510(022:076)
510.60 519.5 QA276 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991001026619707536 |
Hoel, Paul G.
![]() |
||
Boston : Houghton Mifflin Company, 1971 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Introductory statistics and analytics : a resampling perspective / / Peter C. Bruce |
Autore | Bruce Peter C. <1953-> |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , 2015 |
Descrizione fisica | 1 online resource (285 pages) |
Disciplina | 519.5 |
Soggetto topico | Statistics |
ISBN |
1-118-88166-4
1-118-88133-8 |
Classificazione |
417
519.5 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Title Page; Copyright; Preface; Book Website; Acknowledgments; Stan Blank; Michelle Everson; Robert Hayden; Introduction; If You Can't Measure it, You Can't Manage It; Phantom Protection from Vitamin E; Statistician, Heal Thyself; Identifying Terrorists in Airports; Looking Ahead in the Book; Resampling; Big Data and Statisticians; Chapter 1: Designing and Carrying Out a Statistical Study; 1.1 A Small Example; 1.2 Is Chance Responsible? The Foundation of Hypothesis Testing; 1.3 A Major Example; 1.4 Designing an Experiment; 1.5 What to Measure-Central Location; 1.6 What to Measure-Variability. 1.7 What to Measure-Distance (Nearness)1.8 Test Statistic; 1.9 The Data; 1.10 Variables and Their Flavors; 1.11 Examining and Displaying the Data; 1.12 Are we Sure we Made a Difference?; Appendix: Historical Note; 1.13 EXERCISES; Chapter 2: Statistical Inference; 2.1 Repeating the Experiment; 2.2 How Many Reshuffles?; 2.3 How Odd is Odd?; 2.4 Statistical and Practical Significance; 2.5 When to Use Hypothesis Tests; 2.6 Exercises; Chapter 3: Displaying and Exploring Data; 3.1 Bar Charts; 3.2 Pie Charts; 3.3 Misuse of Graphs; 3.4 Indexing; 3.5 Exercises; Chapter 4: Probability. 4.1 Mendel's Peas4.2 Simple Probability; 4.3 Random Variables and their Probability Distributions; 4.4 The Normal Distribution; 4.5 Exercises; Chapter 5: Relationship Between Two Categorical Variables; 5.1 Two-Way Tables; 5.2 Comparing Proportions; 5.3 More Probability; 5.4 From Conditional Probabilities to Bayesian Estimates; 5.5 Independence; 5.6 Exploratory Data Analysis (EDA); 5.7 Exercises; Chapter 6: Surveys and Sampling; 6.1 Simple Random Samples; 6.2 Margin of Error: Sampling Distribution for a Proportion; 6.3 Sampling Distribution for a Mean; 6.4 A Shortcut-The Bootstrap. 6.5 Beyond Simple Random Sampling6.6 Absolute Versus Relative Sample Size; 6.7 Exercises; Chapter 7: Confidence Intervals; 7.1 Point Estimates; 7.2 Interval Estimates (Confidence Intervals); 7.3 Confidence Interval for a Mean; 7.4 Formula-Based Counterparts to the Bootstrap; 7.5 Standard Error; 7.6 Confidence Intervals for a Single Proportion; 7.7 Confidence Interval for a Difference in Means; 7.8 Confidence Interval for a Difference in Proportions; 7.9 Recapping; Appendix A: More on the Bootstrap; Resampling Procedure-Parametric Bootstrap; Formulas and the Parametric Bootstrap. Appendix B: Alternative PopulationsAppendix C: Binomial Formula Procedure; 7.10 Exercises; Chapter 8: Hypothesis Tests; 8.1 Review of Terminology; 8.2 A-B Tests: The Two Sample Comparison; 8.3 Comparing Two Means; 8.4 Comparing Two Proportions; 8.5 Formula-Based Alternative-t-Test for Means; 8.6 The Null and Alternative Hypotheses; 8.7 Paired Comparisons; Appendix A: Confidence Intervals Versus Hypothesis Tests; Confidence Interval; Relationship Between the Hypothesis Test and the Confidence Interval; Comment; Appendix B: Formula-Based Variations of Two-Sample Tests. |
Record Nr. | UNINA-9910795803803321 |
Bruce Peter C. <1953->
![]() |
||
Hoboken, New Jersey : , : Wiley, , 2015 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Introductory statistics and analytics : a resampling perspective / / Peter C. Bruce |
Autore | Bruce Peter C. <1953-> |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , 2015 |
Descrizione fisica | 1 online resource (285 pages) |
Disciplina | 519.5 |
Soggetto topico | Statistics |
ISBN |
1-118-88166-4
1-118-88133-8 |
Classificazione |
417
519.5 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Title Page; Copyright; Preface; Book Website; Acknowledgments; Stan Blank; Michelle Everson; Robert Hayden; Introduction; If You Can't Measure it, You Can't Manage It; Phantom Protection from Vitamin E; Statistician, Heal Thyself; Identifying Terrorists in Airports; Looking Ahead in the Book; Resampling; Big Data and Statisticians; Chapter 1: Designing and Carrying Out a Statistical Study; 1.1 A Small Example; 1.2 Is Chance Responsible? The Foundation of Hypothesis Testing; 1.3 A Major Example; 1.4 Designing an Experiment; 1.5 What to Measure-Central Location; 1.6 What to Measure-Variability. 1.7 What to Measure-Distance (Nearness)1.8 Test Statistic; 1.9 The Data; 1.10 Variables and Their Flavors; 1.11 Examining and Displaying the Data; 1.12 Are we Sure we Made a Difference?; Appendix: Historical Note; 1.13 EXERCISES; Chapter 2: Statistical Inference; 2.1 Repeating the Experiment; 2.2 How Many Reshuffles?; 2.3 How Odd is Odd?; 2.4 Statistical and Practical Significance; 2.5 When to Use Hypothesis Tests; 2.6 Exercises; Chapter 3: Displaying and Exploring Data; 3.1 Bar Charts; 3.2 Pie Charts; 3.3 Misuse of Graphs; 3.4 Indexing; 3.5 Exercises; Chapter 4: Probability. 4.1 Mendel's Peas4.2 Simple Probability; 4.3 Random Variables and their Probability Distributions; 4.4 The Normal Distribution; 4.5 Exercises; Chapter 5: Relationship Between Two Categorical Variables; 5.1 Two-Way Tables; 5.2 Comparing Proportions; 5.3 More Probability; 5.4 From Conditional Probabilities to Bayesian Estimates; 5.5 Independence; 5.6 Exploratory Data Analysis (EDA); 5.7 Exercises; Chapter 6: Surveys and Sampling; 6.1 Simple Random Samples; 6.2 Margin of Error: Sampling Distribution for a Proportion; 6.3 Sampling Distribution for a Mean; 6.4 A Shortcut-The Bootstrap. 6.5 Beyond Simple Random Sampling6.6 Absolute Versus Relative Sample Size; 6.7 Exercises; Chapter 7: Confidence Intervals; 7.1 Point Estimates; 7.2 Interval Estimates (Confidence Intervals); 7.3 Confidence Interval for a Mean; 7.4 Formula-Based Counterparts to the Bootstrap; 7.5 Standard Error; 7.6 Confidence Intervals for a Single Proportion; 7.7 Confidence Interval for a Difference in Means; 7.8 Confidence Interval for a Difference in Proportions; 7.9 Recapping; Appendix A: More on the Bootstrap; Resampling Procedure-Parametric Bootstrap; Formulas and the Parametric Bootstrap. Appendix B: Alternative PopulationsAppendix C: Binomial Formula Procedure; 7.10 Exercises; Chapter 8: Hypothesis Tests; 8.1 Review of Terminology; 8.2 A-B Tests: The Two Sample Comparison; 8.3 Comparing Two Means; 8.4 Comparing Two Proportions; 8.5 Formula-Based Alternative-t-Test for Means; 8.6 The Null and Alternative Hypotheses; 8.7 Paired Comparisons; Appendix A: Confidence Intervals Versus Hypothesis Tests; Confidence Interval; Relationship Between the Hypothesis Test and the Confidence Interval; Comment; Appendix B: Formula-Based Variations of Two-Sample Tests. |
Record Nr. | UNINA-9910822322303321 |
Bruce Peter C. <1953->
![]() |
||
Hoboken, New Jersey : , : Wiley, , 2015 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Spline models for observational data / Grace Wahba |
Autore | Wahba, Grace |
Pubbl/distr/stampa | Philadelphia : SIAM, c1990 |
Descrizione fisica | xii, 169 p. : ill. ; 26 cm |
Collana | CBMS-NSF Regional Conference Series in Applied Mathematics ; 59 |
Soggetto topico |
Mathematical statistics
Spline theory |
ISBN | 0898712440 |
Classificazione |
510.60
510.62 519.5 QA224.W34 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991001258589707536 |
Wahba, Grace
![]() |
||
Philadelphia : SIAM, c1990 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|