top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Analysis and design of autonomous microwave circuits / / Almudena Suarez
Analysis and design of autonomous microwave circuits / / Almudena Suarez
Autore Suarez Almudena
Pubbl/distr/stampa Hoboken, N.J., : Wiley
Descrizione fisica 1 online resource (729 p.)
Disciplina 621.381/32
Collana Wiley series in microwave and optical engineering
Soggetto topico Microwave circuits - Mathematical models
Oscillators, Microwave - Automatic control
Oscillators, Microwave - Design and construction
System analysis
ISBN 9786612682681
9781282682689
1282682687
9780470385906
0470385901
9780470385890
0470385898
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- 1. Oscillator Dynamics -- 1.1. Introduction -- 1.2. Operational Principle of Free-Running Oscillators -- 1.3. Impedance-Admittance Analysis of an Oscillator -- 1.4. Frequency-Domain Formulation of an Oscillator Circuit -- 1.5. Oscillator Dynamics -- 1.6. Phase Noise -- 2. Phase Noise -- 2.1. Introduction -- 2.2. Random Variable and random Processes -- 2.3. Noise Sources in Electronic Circuits -- 2.4. Derivation of the Oscillator Noise Spectrum Using Time-Domain Analysis -- 2.5. Frequency-Domain Analysis of a Noisy Oscillator -- 3. Bifurcation Analysis -- 3.1. Introduction -- 3.2. Representation of Solutions -- 3.3. Bifurcations -- 4. Injected Oscillators and Frequency Dividers -- 4.1. Introduction -- 4.2. Injection-Locked Oscillators -- 4.3. Frequency Dividers -- 4.4. Subharmonically and Ultrasubharmonically Injection-Locked Oscillators -- 4.5. Self-Oscillating Mixers -- 5. Nonlinear Circuit Simulation -- 5.1. Introduction -- 5.2. Time-Domain Integration -- 5.3. Fast Time-Domain Techniques -- 5.4. Harmonic Balance -- 5.5. Harmonic Balance Analysis of Autonomous and Synchronized Circuit -- 5.6. Envelope Transient -- 5.7. Conversion Matrix Approach -- 6. Stability Analysis Using Harmonic Balance -- 6.1. Introduction -- 6.2. Local Stability Analysis -- 6.3. Stability Analysis of Free-Running Oscillators -- 6.4. Solution Curves Versus a Circuit Parameter -- 6.5.Global Stability Analysis -- 6.6. Bifurcation Synthesis and Control -- 7. Noise Analysis Using Harmonic Balance -- 7.1. Introduction -- 7.2. Noise in Semiconductor Devices -- 7.3. Decoupled Analysis of Phase and Amplitude Perturbations in a Harmonic Balance System -- 7.4. Coupled Phase and Amplitude Noise Calculation -- 7.5. Carrier Modulation Approach -- 7.6. Conversion Matrix Approach -- 7.7. Noise in Synchronized Oscillators -- 8. Harmonic Balance Techniques for Oscillator Design -- 8.1. Introduction -- 8.2. Oscillator Synthesis -- 8.3. Design of Voltage-Controlled Oscillators
8.4. Maximization of Oscillator Efficiency -- 8.5. Control of Oscillator Transients -- 8.6. Phase Noise Reduction -- 9. Stabilization Techniques for Phase Noise Reduction -- 9.1. Introduction -- 9.2. Self-Injection Topology -- 9.3. Use of High-Q Resonators -- 9.4. Stabilization Loop -- 9.5. Transistor-Based Oscillators -- 10. Coupled-Oscillator Systems -- 10.1. Introduction -- 10.2. Oscillator Systems with Global Coupling -- 10.3. Coupled-Oscillator Systems for Beam Steering -- 11. Simulation Techniques for Frequency-Divider Design -- 11.1. Introduction -- 11.2. Types of frequency dividers -- 11.3. Design of Transistor-Based Regenerative Frequency Dividers -- 11.4. Design of Harmonic Injection Dividers -- 11.5. Extension of the Techniques to Subharmonic Injection Oscillators -- 12. Circuit Stabilization -- 12.1. Introduction -- 12.2. Unstable Class AB Amplifier Using Power Combiners -- 12.3. Unstable Class E/F Amplifier -- 12.4. Unstable Class E Amplifier -- 12.5. Stabilization of Oscillator Circuits -- 12.6. Stabilization of Multifunction MMIC Chips -- Index
Record Nr. UNINA-9910877733803321
Suarez Almudena  
Hoboken, N.J., : Wiley
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analysis and design of autonomous microwave circuits / / Almudena Suárez
Analysis and design of autonomous microwave circuits / / Almudena Suárez
Autore Suárez Almudena
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , c2009
Descrizione fisica 1 online resource (729 p.)
Disciplina 621.381/32
621.38132
Collana Wiley series in microwave and optical engineering
Soggetto topico Microwave circuits - Mathematical models
Oscillators, Microwave - Automatic control
Oscillators, Microwave - Design and construction
System analysis
ISBN 1-282-68268-7
9786612682681
0-470-38590-1
0-470-38589-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- 1. Oscillator Dynamics -- 1.1. Introduction -- 1.2. Operational Principle of Free-Running Oscillators -- 1.3. Impedance-Admittance Analysis of an Oscillator -- 1.4. Frequency-Domain Formulation of an Oscillator Circuit -- 1.5. Oscillator Dynamics -- 1.6. Phase Noise -- 2. Phase Noise -- 2.1. Introduction -- 2.2. Random Variable and random Processes -- 2.3. Noise Sources in Electronic Circuits -- 2.4. Derivation of the Oscillator Noise Spectrum Using Time-Domain Analysis -- 2.5. Frequency-Domain Analysis of a Noisy Oscillator -- 3. Bifurcation Analysis -- 3.1. Introduction -- 3.2. Representation of Solutions -- 3.3. Bifurcations -- 4. Injected Oscillators and Frequency Dividers -- 4.1. Introduction -- 4.2. Injection-Locked Oscillators -- 4.3. Frequency Dividers -- 4.4. Subharmonically and Ultrasubharmonically Injection-Locked Oscillators -- 4.5. Self-Oscillating Mixers -- 5. Nonlinear Circuit Simulation -- 5.1. Introduction -- 5.2. Time-Domain Integration -- 5.3. Fast Time-Domain Techniques -- 5.4. Harmonic Balance -- 5.5. Harmonic Balance Analysis of Autonomous and Synchronized Circuit -- 5.6. Envelope Transient -- 5.7. Conversion Matrix Approach -- 6. Stability Analysis Using Harmonic Balance -- 6.1. Introduction -- 6.2. Local Stability Analysis -- 6.3. Stability Analysis of Free-Running Oscillators -- 6.4. Solution Curves Versus a Circuit Parameter -- 6.5.Global Stability Analysis -- 6.6. Bifurcation Synthesis and Control -- 7. Noise Analysis Using Harmonic Balance -- 7.1. Introduction -- 7.2. Noise in Semiconductor Devices -- 7.3. Decoupled Analysis of Phase and Amplitude Perturbations in a Harmonic Balance System -- 7.4. Coupled Phase and Amplitude Noise Calculation -- 7.5. Carrier Modulation Approach -- 7.6. Conversion Matrix Approach -- 7.7. Noise in Synchronized Oscillators -- 8. Harmonic Balance Techniques for Oscillator Design -- 8.1. Introduction -- 8.2. Oscillator Synthesis -- 8.3. Design of Voltage-Controlled Oscillators
8.4. Maximization of Oscillator Efficiency -- 8.5. Control of Oscillator Transients -- 8.6. Phase Noise Reduction -- 9. Stabilization Techniques for Phase Noise Reduction -- 9.1. Introduction -- 9.2. Self-Injection Topology -- 9.3. Use of High-Q Resonators -- 9.4. Stabilization Loop -- 9.5. Transistor-Based Oscillators -- 10. Coupled-Oscillator Systems -- 10.1. Introduction -- 10.2. Oscillator Systems with Global Coupling -- 10.3. Coupled-Oscillator Systems for Beam Steering -- 11. Simulation Techniques for Frequency-Divider Design -- 11.1. Introduction -- 11.2. Types of frequency dividers -- 11.3. Design of Transistor-Based Regenerative Frequency Dividers -- 11.4. Design of Harmonic Injection Dividers -- 11.5. Extension of the Techniques to Subharmonic Injection Oscillators -- 12. Circuit Stabilization -- 12.1. Introduction -- 12.2. Unstable Class AB Amplifier Using Power Combiners -- 12.3. Unstable Class E/F Amplifier -- 12.4. Unstable Class E Amplifier -- 12.5. Stabilization of Oscillator Circuits -- 12.6. Stabilization of Multifunction MMIC Chips -- Index
Record Nr. UNINA-9910145953303321
Suárez Almudena  
Hoboken, New Jersey : , : Wiley, , c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analysis and design of autonomous microwave circuits / / Almudena Suárez
Analysis and design of autonomous microwave circuits / / Almudena Suárez
Autore Suárez Almudena
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , c2009
Descrizione fisica 1 online resource (729 p.)
Disciplina 621.381/32
621.38132
Collana Wiley series in microwave and optical engineering
Soggetto topico Microwave circuits - Mathematical models
Oscillators, Microwave - Automatic control
Oscillators, Microwave - Design and construction
System analysis
ISBN 1-282-68268-7
9786612682681
0-470-38590-1
0-470-38589-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- 1. Oscillator Dynamics -- 1.1. Introduction -- 1.2. Operational Principle of Free-Running Oscillators -- 1.3. Impedance-Admittance Analysis of an Oscillator -- 1.4. Frequency-Domain Formulation of an Oscillator Circuit -- 1.5. Oscillator Dynamics -- 1.6. Phase Noise -- 2. Phase Noise -- 2.1. Introduction -- 2.2. Random Variable and random Processes -- 2.3. Noise Sources in Electronic Circuits -- 2.4. Derivation of the Oscillator Noise Spectrum Using Time-Domain Analysis -- 2.5. Frequency-Domain Analysis of a Noisy Oscillator -- 3. Bifurcation Analysis -- 3.1. Introduction -- 3.2. Representation of Solutions -- 3.3. Bifurcations -- 4. Injected Oscillators and Frequency Dividers -- 4.1. Introduction -- 4.2. Injection-Locked Oscillators -- 4.3. Frequency Dividers -- 4.4. Subharmonically and Ultrasubharmonically Injection-Locked Oscillators -- 4.5. Self-Oscillating Mixers -- 5. Nonlinear Circuit Simulation -- 5.1. Introduction -- 5.2. Time-Domain Integration -- 5.3. Fast Time-Domain Techniques -- 5.4. Harmonic Balance -- 5.5. Harmonic Balance Analysis of Autonomous and Synchronized Circuit -- 5.6. Envelope Transient -- 5.7. Conversion Matrix Approach -- 6. Stability Analysis Using Harmonic Balance -- 6.1. Introduction -- 6.2. Local Stability Analysis -- 6.3. Stability Analysis of Free-Running Oscillators -- 6.4. Solution Curves Versus a Circuit Parameter -- 6.5.Global Stability Analysis -- 6.6. Bifurcation Synthesis and Control -- 7. Noise Analysis Using Harmonic Balance -- 7.1. Introduction -- 7.2. Noise in Semiconductor Devices -- 7.3. Decoupled Analysis of Phase and Amplitude Perturbations in a Harmonic Balance System -- 7.4. Coupled Phase and Amplitude Noise Calculation -- 7.5. Carrier Modulation Approach -- 7.6. Conversion Matrix Approach -- 7.7. Noise in Synchronized Oscillators -- 8. Harmonic Balance Techniques for Oscillator Design -- 8.1. Introduction -- 8.2. Oscillator Synthesis -- 8.3. Design of Voltage-Controlled Oscillators
8.4. Maximization of Oscillator Efficiency -- 8.5. Control of Oscillator Transients -- 8.6. Phase Noise Reduction -- 9. Stabilization Techniques for Phase Noise Reduction -- 9.1. Introduction -- 9.2. Self-Injection Topology -- 9.3. Use of High-Q Resonators -- 9.4. Stabilization Loop -- 9.5. Transistor-Based Oscillators -- 10. Coupled-Oscillator Systems -- 10.1. Introduction -- 10.2. Oscillator Systems with Global Coupling -- 10.3. Coupled-Oscillator Systems for Beam Steering -- 11. Simulation Techniques for Frequency-Divider Design -- 11.1. Introduction -- 11.2. Types of frequency dividers -- 11.3. Design of Transistor-Based Regenerative Frequency Dividers -- 11.4. Design of Harmonic Injection Dividers -- 11.5. Extension of the Techniques to Subharmonic Injection Oscillators -- 12. Circuit Stabilization -- 12.1. Introduction -- 12.2. Unstable Class AB Amplifier Using Power Combiners -- 12.3. Unstable Class E/F Amplifier -- 12.4. Unstable Class E Amplifier -- 12.5. Stabilization of Oscillator Circuits -- 12.6. Stabilization of Multifunction MMIC Chips -- Index
Record Nr. UNINA-9910830834003321
Suárez Almudena  
Hoboken, New Jersey : , : Wiley, , c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The art of electronics / Paul Horowitz and Winfield Hill
The art of electronics / Paul Horowitz and Winfield Hill
Autore Horowitz, Paul
Edizione [3rd ed.]
Descrizione fisica xxxi, 1192 pages : ill. ; 26 cm
Disciplina 621.381/32
Altri autori (Persone) Hill, Winfieldauthor
Soggetto topico Electronics
Electronic circuit design
ISBN 9780521809269 (hardback)
Classificazione LC TK7815
621.3.1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991003347639707536
Horowitz, Paul  
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Asymmetric passive components in microwave integrated circuits / / by Hee-Ran Ahn
Asymmetric passive components in microwave integrated circuits / / by Hee-Ran Ahn
Autore Ahn Hee-Ran <1956->
Pubbl/distr/stampa Hoboken, NJ, : J. Wiley & Sons, c2006
Descrizione fisica 1 online resource (308 p.)
Disciplina 621.381/32
Collana Wiley series in microwave and optical engineering
Soggetto topico Microwave integrated circuits
Passive components
ISBN 9786610517268
9781280517266
1280517263
9780470036969
0470036966
9780470036952
0470036958
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Asymmetric Passive Components in Microwave Integrated Circuits; Contents; Preface; 1 Introduction; 1.1 Asymmetric Passive Components; 1.2 Circuit Parameters; 1.3 Asymmetric Four-Port Hybrids; 1.3.1 Asymmetric Ring Hybrids; 1.3.2 Asymmetric Branch-Line Hybrids; 1.4 Asymmetric Three-Port Power Dividers; 1.5 Asymmetric Two-Port Components; References; 2 Circuit Parameters; 2.1 Scattering Matrix; 2.1.1 Transmission-Line Theory; 2.1.2 Basis-Dependent Scattering Parameters of a One-Port Network; 2.1.3 Voltage- and Current-Basis Scattering Matrices of n-Port Networks
2.1.4 Complex Normalized Scattering Matrix2.2 Scattering Parameters of Reduced Multiports; 2.2.1 Examples of Reduced Multiports; 2.3 Two-Port Network Analysis Using Scattering Parameters; 2.4 Other Circuit Parameters; 2.4.1 ABCD Parameters; 2.4.2 Open-Circuit Impedance and Short-Circuit Admittance Parameters; 2.4.3 Conversion Matrices of Two-Port Networks Terminated in Arbitrary Impedances; 2.5 Analyses of Symmetric Networks; 2.5.1 Analyses with Even- and Odd-Mode Excitations; 2.5.2 Useful Symmetric Two-Port Networks; 2.5.3 Properties of Symmetric Two-Port Networks
2.6 Analyses with Image Parameters2.6.1 Image Impedances; 2.6.2 Image Propagation Constants; 2.6.3 Symmetrical and Common Structures; Exercises; References; 3 Conventional Ring Hybrids; 3.1 Introduction; 3.2 Original Concept of the 3-dB Ring Hybrid; 3.3 Conventional Ring Hybrids; 3.3.1 Coupled Transmission Lines; 3.3.2 Ring Hybrids with Coupled Transmission Lines; 3.3.3 Wideband Ring Hybrids; 3.3.4 Symmetric Ring Hybrids with Arbitrary Power Divisions; 3.3.5 Conventional Lumped-Element Ring Hybrids; 3.3.6 Mixed Small Ring Hybrids; 3.4 Conventional 3-dB Uniplanar Ring Hybrids
3.4.1 Uniplanar T-Junctions3.4.2 Transitions; 3.4.3 Wideband Uniplanar Baluns; 3.4.4 Uniplanar Ring Hybrids; Exercises; References; 4 Asymmetric Ring Hybrids; 4.1 Introduction; 4.2 Derivation of Design Equations of Asymmetric Ring Hybrids; 4.3 Small Asymmetric Ring Hybrids; 4.4 Wideband or Small Asymmetric Ring Hybrids; 4.4.1 Microstrip Asymmetric Ring Hybrids; 4.4.2 Uniplanar Asymmetric Ring Hybrids; 4.5 Miniaturized Ring Hybrids Terminated in Arbitrary Impedances; 4.5.1 Asymmetric Lumped-Element Ring Hybrids; Exercises; References; 5 Asymmetric Branch-Line Hybrids; 5.1 Introduction
5.2 Origin of Branch-Line Hybrids5.3 Multisection Branch-Line Couplers; 5.4 Branch-Line Hybrids for Impedance Transforming; 5.5 Asymmetric Four-Port Hybrids; 5.5.1 Analyses of Asymmetric Four-Port Hybrids; 5.5.2 Conventional-Direction Asymmetric Branch-Line Hybrids; 5.5.3 Anti-Conventional-Direction Asymmetric Branch-Line Hybrids; Exercises; References; 6 Conventional Three-Port Power Dividers; 6.1 Introduction; 6.2 Three-Port 3-dB Power Dividers; 6.3 Three-Port Power Dividers with Arbitrary Power Divisions; 6.4 Symmetric Analyses of Asymmetric Three-Port Power Dividers
6.5 Three-Port 3-dB Power Dividers Terminated in Complex Frequency-Dependent Impedances
Record Nr. UNINA-9910877373203321
Ahn Hee-Ran <1956->  
Hoboken, NJ, : J. Wiley & Sons, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Coplanar microwave integrated circuits / / Ingo Wolff
Coplanar microwave integrated circuits / / Ingo Wolff
Autore Wolff Ingo
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2006
Descrizione fisica 1 online resource (559 p.)
Disciplina 621.381/32
Soggetto topico Microwave integrated circuits
ISBN 9786610507924
9781280507922
1280507926
9780470040881
0470040882
9780470040874
0470040874
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto COPLANAR MICROWAVE INTEGRATED CIRCUITS; CONTENTS; Preface; 1 Introduction; References; 2 Transmission Properties of Coplanar Waveguides; 2.1 Rigorous, Full-Wave Analysis of Transmission Properties; 2.1.1 The Coplanar Waveguide with a Single Center Strip and Finite Ground-Plane Width; 2.1.2 The Coplanar Waveguide with a Single Center Strip and Infinite Ground-Plane Width; 2.1.3 Coupled Coplanar Waveguides; 2.1.3.1 Scattering Matrix of Coupled Coplanar Waveguides; 2.1.3.2 Coupled Coplanar Waveguides and Microstrip Lines-A Comparison
2.2 Quasi-Static Analysis of Coplanar Waveguides Using the Finite Difference Method2.2.1 Introduction; 2.2.2 The Finite Difference Method as Applied to the Analysis of Coplanar Waveguide Structures; 2.2.3 The Solution of Laplace's Equation for Planar and Coplanar Line Structures Using the Finite Difference Method; 2.2.4 Application of the Quasi-Static Techniques to the Analysis of Coplanar Waveguides; 2.2.5 Characteristic Parameters of Coplanar Waveguides; 2.2.6 The Influence of the Metalization Thickness on the Line Parameters
2.2.7 The Influence of the Ground Strip Width on the Line Parameters2.2.8 The Influence of the Shielding on the Line Parameters; 2.2.9 Special Forms of Coplanar Waveguides; 2.2.10 Coplanar-like Waveguides; 2.2.11 Coupled Coplanar Waveguide Structures; 2.2.11.1 Analysis of the Characteristic Parameter Matrices; 2.2.11.2 Determination of the Scattering Matrix of Coupled Coplanar Waveguides; 2.3 Closed Formula Static Analysis of Coplanar Waveguide Properties; 2.3.1 Analysis of a Generalized Coplanar Waveguide with Supporting Substrate Layers; 2.3.1.1 Structure SCPW1; 2.3.1.2 Structure SCPW2
2.3.1.3 Structure SCPW32.3.1.4 Numerical Results; 2.3.2 Static Formulas for Calculating the Parameters of General Broadside-Coupled Coplanar Waveguides; 2.3.2.1 Analytical Formulas and Results for the General Broadside-Coupled Coplanar Waveguide; 2.3.2.2 Analysis of an Asymmetric Supported BSC-CPW; 2.3.2.3 Application of the GBSC-CPW as Single CPW; 2.3.2.4 Criteria for the Coplanar Behavior of the Structure; Bibliography and References; 3 Coplanar Waveguide Discontinuities; 3.1 The Three-Dimensional Finite Difference Analysis; 3.2 Computation of the Electric Field Strength
3.3 Computation of the Magnetic Field Strength3.3.1 Convergence and Error Discussion for the Analysis Technique; 3.4 Coplanar Waveguide Discontinuities; 3.4.1 Modeling the Discontinuities; 3.4.2 Extraction of the Model Parameters; 3.5 Description of Coplanar Waveguide Discontinuities; 3.5.1 The Coplanar Open End; 3.5.2 The Coplanar Waveguide Short-Circuited End; 3.5.3 The Gap in a Coplanar Waveguide; 3.5.4 The Coplanar Waveguide Step; 3.5.5 Air Bridges in Coplanar Waveguides; 3.5.6 The Coplanar Waveguide Bend; 3.5.7 The Coplanar Waveguide T-Junction
3.5.7.1 Analysis of the Odd-Mode Excitation
Record Nr. UNINA-9910877646003321
Wolff Ingo  
Hoboken, N.J., : Wiley-Interscience, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Delta-sigma A/D-converters : practical design for communication systems / / Richard Gaggl
Delta-sigma A/D-converters : practical design for communication systems / / Richard Gaggl
Autore Gaggl Richard
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Berlin, : Springer, 2013
Descrizione fisica 1 online resource (156 p.)
Disciplina 004.01/51
621.381/32
Collana Springer Series in Advanced Microelectronics
Soggetto topico Analog-to-digital converters
Digital-to-analog converters
Modulators (Electronics) - Design
ISBN 3-642-34543-3
1-283-94633-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Limitations of Delta-Sigma Converters -- A Delta-Sigma Converter with Dynamic-Biasing Technique -- A feed-forward Delta-Sigma Converter for ADSL -- A Delta-Sigma Converter for WLAN using a TEQ.
Record Nr. UNINA-9910437893303321
Gaggl Richard  
Berlin, : Springer, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electromechanical coupling theory, methodology and applications for high-performance microwave equipment / / Baoyan Duan and Shuxin Zhang
Electromechanical coupling theory, methodology and applications for high-performance microwave equipment / / Baoyan Duan and Shuxin Zhang
Autore Duan Baoyan
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , [2023]
Descrizione fisica 1 online resource (339 pages)
Disciplina 621.381/32
Soggetto topico Microwave circuits
Microwave devices
Couplings
ISBN 1-119-90442-0
1-119-90440-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Chapter 1 Background of Electromechanical Coupling of Electronic Equipment -- 1.1 Introduction -- 1.2 Characteristics of Electronic Equipment -- 1.3 Components of Electronic Equipment -- 1.3.1 Mechanical and Structural Part of Electronic Equipment -- 1.3.2 Electrical Part of Electronic Equipment -- 1.4 On research of Electromechanical Coupling (EMC) of Electronic Equipment -- 1.4.1 Current Status of Research on Electromechanical Coupling of Electronic Equipment -- 1.4.2 The Development Trends of Electronic Equipment -- 1.4.2.1 High Frequency and High Gain -- 1.4.2.2 Broad Bandwidth, Multiband, and High Power -- 1.4.2.3 High Density and Miniaturization -- 1.4.2.4 Fast Response and High Pointing Accuracy -- 1.4.2.5 Good Environmental Adaptability -- 1.4.2.6 Integration -- 1.4.2.7 Intelligence -- 1.5 Problem of the Traditional Design Method of Electronic Equipment -- 1.5.1 Traditional Design Method and Problems with Electronic Equipment -- 1.5.2 The Electromechanical Coupling Problem of Electronic Equipment and Its Solution -- 1.6 Main Science and Technology Respects of Design for Electronic Equipment -- 1.6.1 Holism of Electronic Equipment System Design -- 1.6.2 Electromechanical Coupling Theory of Electronic Equipment -- 1.6.3 Test and Evaluation Methods of Electronic Equipment -- 1.6.4 Environmental Adaptability (Thermal, Vibration, and EMC) and Reliability of Electronic Equipment -- 1.6.5 Special Electronic Equipment -- 1.6.6 Electromechanical Coupling Design of Electronic Equipment -- 1.6.6.1 Electromechanical Coupling Design of Antennas -- 1.6.6.2 Integrated Design of Radar Antenna Servo System -- 1.6.6.3 Coupling Design of High‐Density Chassis -- 1.7 Mechatronics Marching Toward Coupling Between Mechanical and Electronic Technologies -- References.
Chapter 2 Fundamental of Establishing Multifield Coupling Theoretical Model of Electronic Equipment -- 2.1 Introduction -- 2.2 Mathematical Description of Electromagnetic (EM), Structural Deformation (S), and Temperature (T) Fields -- 2.2.1 Electromagnetic Field -- 2.2.2 Structural Displacement Field -- 2.2.3 Temperature Field -- 2.3 Consideration of Establishing Multifield Coupling Model -- References -- Chapter 3 Multifield Coupling Models of Four Kinds of Typical Electronic Equipment -- 3.1 Introduction -- 3.2 Reflector Antennas -- 3.2.1 Influence of Main Reflector Deformation -- 3.2.2 Influence of the Feed Position Error -- 3.2.3 Effect of Feed Pointing Error -- 3.2.4 Electromechanical Two‐field Coupling Model -- 3.2.5 Dual Reflector Antenna -- 3.2.6 Experiment -- 3.2.6.1 Basic Parameters -- 3.2.6.2 The Basic Idea of the Experiment -- 3.2.6.3 Working Conditions and Deformation -- 3.2.6.4 Measurement and Environment -- 3.2.6.5 Calculated and Measured Results -- 3.3 Planar Slotted Waveguide Array Antennas -- 3.3.1 Effect of Position Error of the Radiation Slot -- 3.3.2 Effect of Radiation Slot Pointing Deflection -- 3.3.3 Effect of Seam Cavity Deformation on Radiation Seam Voltage -- 3.3.4 Two‐field Electromechanical Coupling Model -- 3.3.5 Experiment -- 3.3.5.1 Basic Parameters -- 3.3.5.2 Basic Idea -- 3.3.5.3 Working Condition and Deformation -- 3.3.5.4 Testing and Environment -- 3.3.5.5 Calculated and Measured Results -- 3.4 Active Phased Array Antennas -- 3.4.1 Effect of Change of Position and Attitude of the Radiation Unit -- 3.4.2 Effect of Array Surface Manufacturing and Assembly Errors -- 3.4.3 Effect of Radiation Array Element Manufacturing and Assembly Errors -- 3.4.3.1 Waveguide Flange Connection Discontinuity -- 3.4.3.2 Influence of Waveguide Inner Wall Roughness -- 3.4.3.3 Effect of Temperature Drift of T/R Components.
3.4.4 Effect of Mutual Coupling of Radiation Elements on the Radiation Performance of Antennas -- 3.4.5 Theoretical Model of Electromagnetic-Displacement-Temperature Fields Coupling -- 3.4.6 Experiment -- 3.4.6.1 Basic Parameters -- 3.4.6.2 Basic Ideas -- 3.4.6.3 Working Conditions and Array Surface Errors -- 3.4.6.4 Measurement and Environment -- 3.4.6.5 Calculated and Measured Results -- 3.5 High‐density Cabinets -- 3.5.1 Effect of Contact Gaps -- 3.5.2 Effect of Heat Sink Holes and Structural Deformation -- 3.5.3 Theoretical Model of Electromagnetic-Displacement-Temperature Fields Coupling -- 3.5.4 Experiment -- 3.5.4.1 Basic Parameters -- 3.5.4.2 Measurement and Environment -- 3.5.4.3 Calculated and Measured Results -- References -- Chapter 4 Solving Strategy and Method of the Multifield Coupling Problem of Electronic Equipment -- 4.1 Introduction -- 4.2 Solving Strategy of the Multifield Coupling Problem -- 4.3 Solving Method of the Multifield Coupling Problem -- 4.3.1 Solution Method of Direct Coupling Analysis -- 4.3.2 Solution Method of Sequential Coupling Analysis -- 4.3.3 Solution Method for Mathematical Decoupling Analysis -- 4.3.4 Solution Method of Integrated Optimization Analysis -- 4.4 General Approach Method of the Multifield Coupling Problem -- 4.4.1 Neighborhood Interpolation Method -- 4.4.2 Mapping Method -- 4.4.3 Spline Function Interpolation Method -- 4.4.4 Continuation Method -- 4.5 The Mesh Matching Among Different Fields -- 4.5.1 Generated Directly in the Structural Finite Element Mesh -- 4.5.2 Mesh Mapping from Structure to EM -- 4.6 Mesh Transformation and Information Transfer -- 4.6.1 Transmission of Deformation Information -- 4.6.2 Extraction of Deformed Meshes -- References -- Chapter 5 Influence Mechanism (IM) of Nonlinear Factors of Antenna‐Servo‐Feeder Systems on Performance -- 5.1 Introduction.
5.2 Data Mining of ISFP -- 5.2.1 Data Modeling Method -- 5.2.2 Acquisition of Data Samples -- 5.2.2.1 Building the Initial Data Warehouse -- 5.2.2.2 Obtaining the Data Samples Needed for Modeling -- 5.2.2.3 Data Conversion and Normalized Processing -- 5.2.3 Multicore Regression Method for Data Mining -- 5.2.4 Application of Data Mining -- 5.3 ISFP of Reflector Antennas -- 5.3.1 Data Collection and Mining -- 5.3.2 The Establishment of an Analysis Model of the Influence Mechanism -- 5.3.3 Experiment -- 5.4 ISFP of Planar Slotted Waveguide Array Antennas -- 5.4.1 Hierarchical Relationship Model of Structural Factors and Electrical Properties -- 5.4.2 Influence of Structural Factors on the Amplitude Phase of a Unit in a Radiated Functional Component -- 5.4.2.1 Influence of Slot Deviation on Conductance and Resonance Length -- 5.4.2.2 The Relationship Between Frequency and Admittance, Amplitude Phase -- 5.4.2.3 Influence of Waveguide Wall Thickness on Admittance, Amplitude Phase -- 5.4.2.4 Influence of Slot Width on Admittance, Amplitude Phase -- 5.4.2.5 Influence of Slot Length on Amplitude and Phase -- 5.4.3 Influence of Structural Factors on the Amplitude Phase of a Unit in a Coupling Functional Component -- 5.4.3.1 Influence of the Inclination Angle of the Slot on the Resonance Length and Resonance Resistance -- 5.4.3.2 Influence of Inclination Angle and Slot Length on Amplitude and Phase -- 5.4.3.3 Influence of Waveguide Wall Thickness on Impedance, Amplitude Phase -- 5.4.3.4 Influence of Slot Width on Impedance, Amplitude Phase -- 5.4.4 Influence of Structural Factors on Voltage Standing Wave Ratio in the Excitation Functional Components -- 5.4.4.1 Weighting Analysis of the Influence of the structural Factors on the Amplitude and Phase in the Incentive Function Component -- 5.4.4.2 Results and Discussion -- 5.4.5 Prototype Design and Experiment.
5.5 ISFP of Microwave Feeder and Filters -- 5.5.1 Hierarchical Relationship Model of the Influence of Structural Factors on the Resonant Cavity Filters -- 5.5.2 Influence of Structural Factors on the No‐load Q Value of the Resonant Cavity -- 5.5.2.1 Influence of Geometric Shape, Size, and Position Deviation on the No‐load Q Value -- 5.5.2.2 Relationship Between Surface Roughness and Equivalent Conductivity -- 5.5.2.3 Relationship Between Coating Quality and Equivalent Conductivity -- 5.5.2.4 Influence of Coaxial Cavity Assembly Connection Quality on No‐load Q Value -- 5.5.3 Influence of Structural Factors on the Coupling Coefficient -- 5.5.3.1 Influence of Coupling Hole Structure Factors on the Coupling Coefficient -- 5.5.3.2 Analysis of the Influence of the Position and Size of the Coupling Diaphragm and the Length of the Resonant Rod on the Coupling Coefficient -- 5.5.4 Influence of Tuning Screw on Resonance Frequency and Coupling Coefficient -- 5.5.4.1 Effect of Screw‐in Depth on Resonant Frequency -- 5.5.4.2 Relationship of the Influence of the Tuning Screw on the Coupling Coefficient -- 5.5.5 Influence of Structural Factors on the Power Capacity of Microwave Filters -- 5.5.6 Prototype Production and Experiment -- 5.6 ISFP of Radar‐Servo Mechanism -- 5.6.1 Influence of Clearance on the Performance of the Servo System -- 5.6.1.1 Influence of Gear Meshing Clearance -- 5.6.1.2 Influence of Bearing Clearance -- 5.6.2 Influence of Friction on the Performance of the Servo System -- 5.6.2.1 Influence of Gear Meshing Friction -- 5.6.2.2 Influence of Bearing Friction -- 5.6.3 Construction of Servo System Prototype and Experiment -- 5.6.3.1 Servo System Prototype -- 5.6.3.2 Experiment -- 5.7 ISFP of Active Phased Array Antennas with Radiating Arrays -- 5.7.1 Decomposition and Accuracy Transfer of Multilayer Conformal Surfaces.
5.7.1.1 Decomposition of Multilayer Conformal Surfaces.
Record Nr. UNINA-9910829907903321
Duan Baoyan  
Hoboken, New Jersey : , : John Wiley & Sons, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Elements of microwave networks : basics of microwave engineering / / Carmine Vittoria
Elements of microwave networks : basics of microwave engineering / / Carmine Vittoria
Autore Vittoria C
Pubbl/distr/stampa Singapore ; ; River Edge, NJ, : World Scientific, c1998
Descrizione fisica 1 online resource (298 p.)
Disciplina 621.381/32
Soggetto topico Microwave circuits - Mathematical models
Microwave transmission lines - Mathematical models
Microwaves - Mathematical models
ISBN 9781628700985
162870098X
9789812816306
9812816305
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Preface; Chapter I Review of Maxwell Equations; A. Maxwell's Equations in MKS System of Units; B. General Constitutive Relations; C. External, Surface and Internal Electromagnetic Fields; D. Practical Example; E. Electric Polarization of Microwave Signal; F. Microwave Response and Polarization; SUGGESTED REFERENCES; Example 1; Example 2; Example 3; Chapter II Common Waveguide Structures; A. Parallel Plate Waveguides; B. Coaxial Line; C. Rectangular Waveguide; SUGGESTED REFERENCES; Example 1; Example 2; Example 3; Chapter III Telegraph's Equation; A. Types of Transmission Lines
B. Wave EquationC. Connection to Circuit Parameters; D. Formal Solution; E. Electrical Quantities; F. Bounce Diagram; Example of Step Function Transients; Graphical Representation; SUGGESTED REFERENCES; Example 1; Example 2; Example 3; Example 4; Example 5; Chapter IV Analytical Solution; Introduction; A. Lossy case; B. Real Time Solutions; C. Lossless Case; D. Determination of lmax and lmin; 1. Lossless Cases; 2. Lossy Transmission Lines; E. Coupling Between Source and Transmission Line; SUGGESTED REFERENCES; Example 1; Example 2; Example 3; Example 4; Example 5; Chapter V Graphic Solution
IntroductionA. Mathematical Terminologies; B. Plot of Γ(-l) in Complex Plane; C. Projection of Z(-l) Onto The Complex Plane - Smith Chart; D. Projection of V(-l) on The Smith Chart; E. Projection of I(-l) on Smith Chart; F. Graphical Methods For Lossy Lines; SUGGESTED REFERENCES; Example 1; a.) Graphical determination of Z(-l); b.) Graphical Determination of V(-l); c.) Graphical Determination of I(-l); Example 2; a.) Graphical Determination of Z(-l); b.) Graphical Determination of V(-l); b.) Graphical Determination of I(-l); Example 3; Chapter VI Special Topics in Transmission Lines
IntroductionA. Stub Tuners; B. Graphical Solution; C. Quarter and Half Wavelength Transmission Lines; 1) Quarter Wavelength Transmission Lines; 2) Half Wavelength Transmission Lines; D. Microwave Absorbers; SUGGGESTED REFERENCES; Example 1; Example 2; Example 3; Example 4; Example 5; Example 6; Chapter VII Electromagnetic Scattering Parameters; Introduction; A. Definition of the S-Parameters; A.1. Algebraic Properties of S Matrix; B. Relationship Between Measurements and Network Electrical Parameters; C. Simple Example of Inverse Scattering Problem
D. General Comments About Scattering ParametersSUGGESTED REFERENCE; Example 1; Example 2; Chapter VIII Matrix Representation of Microwave Networks; Introduction; A. Transfer Function Matrix of Two Port Network; B. Transmission Line Analysis Using Matrix Representation; C. Connection Between Scattering Parameters and Matrix Representation; D. General Properties of Matrix Representation; D.1. Single Networks; D.2. Cascaded Networks; D.3. Periodic Network Systems; D.4. Application; E. Some Special Properties of Ferrite Networks; F. Relationship Between Scattering S-Parameters and Matrix Elements
G. Example of Inverse Scattering
Record Nr. UNINA-9911004722503321
Vittoria C  
Singapore ; ; River Edge, NJ, : World Scientific, c1998
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Foundations of interconnect and microstrip design
Foundations of interconnect and microstrip design
Autore Edwards T. C
Pubbl/distr/stampa [Place of publication not identified], : John Wiley, 2000
Disciplina 621.381/32
Soggetto topico Microwave integrated circuits
Strip transmission lines
Electrical & Computer Engineering
Engineering & Applied Sciences
Electrical Engineering
ISBN 0-470-84164-8
1-118-89451-0
1-60119-588-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910145313803321
Edwards T. C  
[Place of publication not identified], : John Wiley, 2000
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui