A history of non-euclidean geometry : evolution of the concept of a geometric space / B. A. Rosenfeld ; translated by Abe Shenitzer ; with the editorial assistance of Hardy Grant |
Autore | Rosenfeld, Boris Abramovich |
Pubbl/distr/stampa | New York [etc.] : Springer, c1988 |
Descrizione fisica | IX, 471 p. : ill. ; 25 cm. |
Disciplina | 516.9 |
Collana | Studies in the history of mathematics and physical sciences |
Soggetto topico |
Geometria non euclidea
Matematica - Storia |
ISBN | 0-387-96458-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNIBAS-000011134 |
Rosenfeld, Boris Abramovich | ||
New York [etc.] : Springer, c1988 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. della Basilicata | ||
|
A simple non-euclideian geometry and its physical basis : an elementary account of galileian geometry and the galileian principle of relativity / I.M. Yaglom ; translated from the russan by Abe Shenitzer with the editorial assistence of Basil Gordon ; with 227 figure |
Autore | YAGLOM, Isaak Moiseevich |
Pubbl/distr/stampa | New York : Springer-Verlag, c1979 |
Descrizione fisica | XVIII, 307 p. : ill. graf. ; 23 cm |
Disciplina | 516.9 |
Collana | Heidelberg Science Library |
Soggetto non controllato |
Geometria non euclidea
Relatività |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-990000611410203316 |
YAGLOM, Isaak Moiseevich | ||
New York : Springer-Verlag, c1979 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Analytic hyperbolic geometry [[electronic resource] ] : mathematical foundations and applications / / Abraham A. Ungar |
Autore | Ungar Abraham A |
Pubbl/distr/stampa | New Jersey, : World Scientific, c2005 |
Descrizione fisica | 1 online resource (482 p.) |
Disciplina | 516.9 |
Soggetto topico |
Geometry, Hyperbolic
Vector algebra |
Soggetto genere / forma | Electronic books. |
ISBN |
1-281-89922-4
9786611899226 981-270-327-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Preface; Acknowledgements; Contents; 1. Introduction; 2. Gyrogroups; 3. Gyrocommutative Gyrogroups; 4. Gyrogroup Extension; 5. Gyrovectors and Cogyrovectors; 6. Gyrovector Spaces; 7. Rudiments of Differential Geometry; 8. Gyrotrigonometry; 9. Bloch Gyrovector of Quantum Computation; 10. Special Theory of Relativity: The Analytic Hyperbolic Geometric Viewpoint; Notation And Special Symbols; Bibliography; Index |
Record Nr. | UNINA-9910450722803321 |
Ungar Abraham A | ||
New Jersey, : World Scientific, c2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Analytic hyperbolic geometry [[electronic resource] ] : mathematical foundations and applications / / Abraham A. Ungar |
Autore | Ungar Abraham A |
Pubbl/distr/stampa | New Jersey, : World Scientific, c2005 |
Descrizione fisica | 1 online resource (482 p.) |
Disciplina | 516.9 |
Soggetto topico |
Geometry, Hyperbolic
Vector algebra |
ISBN |
1-281-89922-4
9786611899226 981-270-327-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Preface; Acknowledgements; Contents; 1. Introduction; 2. Gyrogroups; 3. Gyrocommutative Gyrogroups; 4. Gyrogroup Extension; 5. Gyrovectors and Cogyrovectors; 6. Gyrovector Spaces; 7. Rudiments of Differential Geometry; 8. Gyrotrigonometry; 9. Bloch Gyrovector of Quantum Computation; 10. Special Theory of Relativity: The Analytic Hyperbolic Geometric Viewpoint; Notation And Special Symbols; Bibliography; Index |
Record Nr. | UNINA-9910784043903321 |
Ungar Abraham A | ||
New Jersey, : World Scientific, c2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Analytic hyperbolic geometry : mathematical foundations and applications / / Abraham A. Ungar |
Autore | Ungar Abraham A |
Edizione | [1st ed.] |
Pubbl/distr/stampa | New Jersey, : World Scientific, c2005 |
Descrizione fisica | 1 online resource (482 p.) |
Disciplina | 516.9 |
Soggetto topico |
Geometry, Hyperbolic
Vector algebra |
ISBN |
1-281-89922-4
9786611899226 981-270-327-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Preface; Acknowledgements; Contents; 1. Introduction; 2. Gyrogroups; 3. Gyrocommutative Gyrogroups; 4. Gyrogroup Extension; 5. Gyrovectors and Cogyrovectors; 6. Gyrovector Spaces; 7. Rudiments of Differential Geometry; 8. Gyrotrigonometry; 9. Bloch Gyrovector of Quantum Computation; 10. Special Theory of Relativity: The Analytic Hyperbolic Geometric Viewpoint; Notation And Special Symbols; Bibliography; Index |
Record Nr. | UNINA-9910815304303321 |
Ungar Abraham A | ||
New Jersey, : World Scientific, c2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Analytic hyperbolic geometry and Albert Einstein's special theory of relativity [[electronic resource] /] / Abraham Albert Ungar |
Autore | Ungar Abraham A |
Pubbl/distr/stampa | Singapore ; ; Hackensack, NJ, : World Scientific, c2008 |
Descrizione fisica | 1 online resource (649 p.) |
Disciplina | 516.9 |
Soggetto topico |
Special relativity (Physics)
Geometry, Hyperbolic |
Soggetto genere / forma | Electronic books. |
ISBN |
1-281-91199-2
9786611911997 981-277-230-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Preface; Acknowledgements; 1. Introduction; 1.1 A Vector Space Approach to Euclidean Geometry and A Gyrovector Space Approach to Hyperbolic Geometry; 1.2 Gyrolanguage; 1.3 Analytic Hyperbolic Geometry; 1.4 The Three Models; 1.5 Applications in Quantum and Special Relativity Theory; 2. Gyrogroups; 2.1 Definitions; 2.2 First Gyrogroup Theorems; 2.3 The Associative Gyropolygonal Gyroaddition; 2.4 Two Basic Gyrogroup Equations and Cancellation Laws; 2.5 Commuting Automorphisms with Gyroautomorphisms; 2.6 The Gyrosemidirect Product Group; 2.7 Basic Gyration Properties
3. Gyrocommutative Gyrogroups3.1 Gyrocommutative Gyrogroups; 3.2 Nested Gyroautomorphism Identities; 3.3 Two-Divisible Two-Torsion Free Gyrocommutative Gyrogroups; 3.4 From M obius to Gyrogroups; 3.5 Higher Dimensional M obius Gyrogroups; 3.6 M obius gyrations; 3.7 Three-Dimensional M obius gyrations; 3.8 Einstein Gyrogroups; 3.9 Einstein Coaddition; 3.10 PV Gyrogroups; 3.11 Points and Vectors in a Real Inner Product Space; 3.12 Exercises; 4. Gyrogroup Extension; 4.1 Gyrogroup Extension; 4.2 The Gyroinner Product, the Gyronorm, and the Gyroboost; 4.3 The Extended Automorphisms 4.4 Gyrotransformation Groups4.5 Einstein Gyrotransformation Groups; 4.6 PV (Proper Velocity) Gyrotransformation Groups; 4.7 Galilei Transformation Groups; 4.8 From Gyroboosts to Boosts; 4.9 The Lorentz Boost; 4.10 The (p :q)-Gyromidpoint; 4.11 The (p1 :p2 :...: pn)-Gyromidpoint; 5. Gyrovectors and Cogyrovectors; 5.1 Equivalence Classes; 5.2 Gyrovectors; 5.3 Gyrovector Translation; 5.4 Gyrovector Translation Composition; 5.5 Points and Gyrovectors; 5.6 The Gyroparallelogram Addition Law; 5.7 Cogyrovectors; 5.8 Cogyrovector Translation; 5.9 Cogyrovector Translation Composition 5.10 Points and Cogyrovectors5.11 Exercises; 6. Gyrovector Spaces; 6.1 Definition and First Gyrovector Space Theorems; 6.2 Solving a System of Two Equations in a Gyrovector Space; 6.3 Gyrolines and Cogyrolines; 6.4 Gyrolines; 6.5 Gyromidpoints; 6.6 Gyrocovariance; 6.7 Gyroparallelograms; 6.8 Gyrogeodesics; 6.9 Cogyrolines; 6.10 Carrier Cogyrolines of Cogyrovectors; 6.11 Cogyromidpoints; 6.12 Cogyrogeodesics; 6.13 Various Gyrolines and Cancellation Laws; 6.14 M obius Gyrovector Spaces; 6.15 M obius Cogyroline Parallelism; 6.16 Illustrating the Gyroline Gyration Transitive Law 6.17 Turning the M obius Gyrometric into the Poincar e Metric6.18 Einstein Gyrovector Spaces; 6.19 Turning Einstein Gyrometric into a Metric; 6.20 PV(ProperVelocity) Gyrovector Spaces; 6.21 Gyrovector Space Isomorphisms; 6.22 Gyrotriangle Gyromedians and Gyrocentroids; 6.22.1 In Einstein Gyrovector Spaces; 6.22.2 In M obius Gyrovector Spaces; 6.22.3 In PV Gyrovector Spaces; 6.23 Exercises; 7. Rudiments of Differential Geometry; 7.1 The Riemannian Line Element of Euclidean Metric; 7.2 The Gyroline and the Cogyroline Element; 7.3 The Gyroline Element of M obius Gyrovector Spaces 7.4 The Cogyroline Element of M obius Gyrovector Spaces |
Record Nr. | UNINA-9910453536303321 |
Ungar Abraham A | ||
Singapore ; ; Hackensack, NJ, : World Scientific, c2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Analytic hyperbolic geometry and Albert Einstein's special theory of relativity [[electronic resource] /] / Abraham Albert Ungar |
Autore | Ungar Abraham A |
Pubbl/distr/stampa | Singapore ; ; Hackensack, NJ, : World Scientific, c2008 |
Descrizione fisica | 1 online resource (649 p.) |
Disciplina | 516.9 |
Soggetto topico |
Special relativity (Physics)
Geometry, Hyperbolic |
ISBN |
1-281-91199-2
9786611911997 981-277-230-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Preface; Acknowledgements; 1. Introduction; 1.1 A Vector Space Approach to Euclidean Geometry and A Gyrovector Space Approach to Hyperbolic Geometry; 1.2 Gyrolanguage; 1.3 Analytic Hyperbolic Geometry; 1.4 The Three Models; 1.5 Applications in Quantum and Special Relativity Theory; 2. Gyrogroups; 2.1 Definitions; 2.2 First Gyrogroup Theorems; 2.3 The Associative Gyropolygonal Gyroaddition; 2.4 Two Basic Gyrogroup Equations and Cancellation Laws; 2.5 Commuting Automorphisms with Gyroautomorphisms; 2.6 The Gyrosemidirect Product Group; 2.7 Basic Gyration Properties
3. Gyrocommutative Gyrogroups3.1 Gyrocommutative Gyrogroups; 3.2 Nested Gyroautomorphism Identities; 3.3 Two-Divisible Two-Torsion Free Gyrocommutative Gyrogroups; 3.4 From M obius to Gyrogroups; 3.5 Higher Dimensional M obius Gyrogroups; 3.6 M obius gyrations; 3.7 Three-Dimensional M obius gyrations; 3.8 Einstein Gyrogroups; 3.9 Einstein Coaddition; 3.10 PV Gyrogroups; 3.11 Points and Vectors in a Real Inner Product Space; 3.12 Exercises; 4. Gyrogroup Extension; 4.1 Gyrogroup Extension; 4.2 The Gyroinner Product, the Gyronorm, and the Gyroboost; 4.3 The Extended Automorphisms 4.4 Gyrotransformation Groups4.5 Einstein Gyrotransformation Groups; 4.6 PV (Proper Velocity) Gyrotransformation Groups; 4.7 Galilei Transformation Groups; 4.8 From Gyroboosts to Boosts; 4.9 The Lorentz Boost; 4.10 The (p :q)-Gyromidpoint; 4.11 The (p1 :p2 :...: pn)-Gyromidpoint; 5. Gyrovectors and Cogyrovectors; 5.1 Equivalence Classes; 5.2 Gyrovectors; 5.3 Gyrovector Translation; 5.4 Gyrovector Translation Composition; 5.5 Points and Gyrovectors; 5.6 The Gyroparallelogram Addition Law; 5.7 Cogyrovectors; 5.8 Cogyrovector Translation; 5.9 Cogyrovector Translation Composition 5.10 Points and Cogyrovectors5.11 Exercises; 6. Gyrovector Spaces; 6.1 Definition and First Gyrovector Space Theorems; 6.2 Solving a System of Two Equations in a Gyrovector Space; 6.3 Gyrolines and Cogyrolines; 6.4 Gyrolines; 6.5 Gyromidpoints; 6.6 Gyrocovariance; 6.7 Gyroparallelograms; 6.8 Gyrogeodesics; 6.9 Cogyrolines; 6.10 Carrier Cogyrolines of Cogyrovectors; 6.11 Cogyromidpoints; 6.12 Cogyrogeodesics; 6.13 Various Gyrolines and Cancellation Laws; 6.14 M obius Gyrovector Spaces; 6.15 M obius Cogyroline Parallelism; 6.16 Illustrating the Gyroline Gyration Transitive Law 6.17 Turning the M obius Gyrometric into the Poincar e Metric6.18 Einstein Gyrovector Spaces; 6.19 Turning Einstein Gyrometric into a Metric; 6.20 PV(ProperVelocity) Gyrovector Spaces; 6.21 Gyrovector Space Isomorphisms; 6.22 Gyrotriangle Gyromedians and Gyrocentroids; 6.22.1 In Einstein Gyrovector Spaces; 6.22.2 In M obius Gyrovector Spaces; 6.22.3 In PV Gyrovector Spaces; 6.23 Exercises; 7. Rudiments of Differential Geometry; 7.1 The Riemannian Line Element of Euclidean Metric; 7.2 The Gyroline and the Cogyroline Element; 7.3 The Gyroline Element of M obius Gyrovector Spaces 7.4 The Cogyroline Element of M obius Gyrovector Spaces |
Record Nr. | UNINA-9910782273303321 |
Ungar Abraham A | ||
Singapore ; ; Hackensack, NJ, : World Scientific, c2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Analytic hyperbolic geometry and Albert Einstein's special theory of relativity / / Abraham Albert Ungar |
Autore | Ungar Abraham A |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Singapore ; ; Hackensack, NJ, : World Scientific, c2008 |
Descrizione fisica | 1 online resource (649 p.) |
Disciplina | 516.9 |
Soggetto topico |
Special relativity (Physics)
Geometry, Hyperbolic |
ISBN |
1-281-91199-2
9786611911997 981-277-230-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Preface; Acknowledgements; 1. Introduction; 1.1 A Vector Space Approach to Euclidean Geometry and A Gyrovector Space Approach to Hyperbolic Geometry; 1.2 Gyrolanguage; 1.3 Analytic Hyperbolic Geometry; 1.4 The Three Models; 1.5 Applications in Quantum and Special Relativity Theory; 2. Gyrogroups; 2.1 Definitions; 2.2 First Gyrogroup Theorems; 2.3 The Associative Gyropolygonal Gyroaddition; 2.4 Two Basic Gyrogroup Equations and Cancellation Laws; 2.5 Commuting Automorphisms with Gyroautomorphisms; 2.6 The Gyrosemidirect Product Group; 2.7 Basic Gyration Properties
3. Gyrocommutative Gyrogroups3.1 Gyrocommutative Gyrogroups; 3.2 Nested Gyroautomorphism Identities; 3.3 Two-Divisible Two-Torsion Free Gyrocommutative Gyrogroups; 3.4 From M obius to Gyrogroups; 3.5 Higher Dimensional M obius Gyrogroups; 3.6 M obius gyrations; 3.7 Three-Dimensional M obius gyrations; 3.8 Einstein Gyrogroups; 3.9 Einstein Coaddition; 3.10 PV Gyrogroups; 3.11 Points and Vectors in a Real Inner Product Space; 3.12 Exercises; 4. Gyrogroup Extension; 4.1 Gyrogroup Extension; 4.2 The Gyroinner Product, the Gyronorm, and the Gyroboost; 4.3 The Extended Automorphisms 4.4 Gyrotransformation Groups4.5 Einstein Gyrotransformation Groups; 4.6 PV (Proper Velocity) Gyrotransformation Groups; 4.7 Galilei Transformation Groups; 4.8 From Gyroboosts to Boosts; 4.9 The Lorentz Boost; 4.10 The (p :q)-Gyromidpoint; 4.11 The (p1 :p2 :...: pn)-Gyromidpoint; 5. Gyrovectors and Cogyrovectors; 5.1 Equivalence Classes; 5.2 Gyrovectors; 5.3 Gyrovector Translation; 5.4 Gyrovector Translation Composition; 5.5 Points and Gyrovectors; 5.6 The Gyroparallelogram Addition Law; 5.7 Cogyrovectors; 5.8 Cogyrovector Translation; 5.9 Cogyrovector Translation Composition 5.10 Points and Cogyrovectors5.11 Exercises; 6. Gyrovector Spaces; 6.1 Definition and First Gyrovector Space Theorems; 6.2 Solving a System of Two Equations in a Gyrovector Space; 6.3 Gyrolines and Cogyrolines; 6.4 Gyrolines; 6.5 Gyromidpoints; 6.6 Gyrocovariance; 6.7 Gyroparallelograms; 6.8 Gyrogeodesics; 6.9 Cogyrolines; 6.10 Carrier Cogyrolines of Cogyrovectors; 6.11 Cogyromidpoints; 6.12 Cogyrogeodesics; 6.13 Various Gyrolines and Cancellation Laws; 6.14 M obius Gyrovector Spaces; 6.15 M obius Cogyroline Parallelism; 6.16 Illustrating the Gyroline Gyration Transitive Law 6.17 Turning the M obius Gyrometric into the Poincar e Metric6.18 Einstein Gyrovector Spaces; 6.19 Turning Einstein Gyrometric into a Metric; 6.20 PV(ProperVelocity) Gyrovector Spaces; 6.21 Gyrovector Space Isomorphisms; 6.22 Gyrotriangle Gyromedians and Gyrocentroids; 6.22.1 In Einstein Gyrovector Spaces; 6.22.2 In M obius Gyrovector Spaces; 6.22.3 In PV Gyrovector Spaces; 6.23 Exercises; 7. Rudiments of Differential Geometry; 7.1 The Riemannian Line Element of Euclidean Metric; 7.2 The Gyroline and the Cogyroline Element; 7.3 The Gyroline Element of M obius Gyrovector Spaces 7.4 The Cogyroline Element of M obius Gyrovector Spaces |
Record Nr. | UNINA-9910825818303321 |
Ungar Abraham A | ||
Singapore ; ; Hackensack, NJ, : World Scientific, c2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Analytic hyperbolic geometry in N dimensions : an introduction / / Abraham A. Ungar, Mathematics Department, North Dakota State University, Fargo, North Dakota, USA |
Autore | Ungar Abraham A. |
Pubbl/distr/stampa | Boca Raton : , : Taylor & Francis, , [2015] |
Descrizione fisica | 1 online resource (616 p.) |
Disciplina | 516.9 |
Collana | A Science Publishers Book |
Soggetto topico | Geometry, Hyperbolic |
ISBN |
0-429-17474-8
1-4822-3668-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; Preface; Contents; List of Figures; Author's Biography; 1. Introduction; Part I: Einstein Gyrogroups and Gyrovector Spaces; 2. Einstein Gyrogroups; 3. Einstein Gyrovector Spaces ; 4. Relativistic Mass Meets Hyperbolic Geometry; Part II: Mathematical Tools for Hyperbolic Geometry; 5. Barycentric and Gyrobarycentric Coordinates; 6. Gyroparallelograms and Gyroparallelotopes; 7. Gyrotrigonometry; Part III: Hyperbolic Triangles and Circles; 8. Gyrotriangles and Gyrocircles; 9. Gyrocircle Theorems; Part IV: Hyperbolic Simplices, Hyperplanes and Hyperspheres in N Dimensions
10. Gyrosimplex Gyrogeometry11. Gyrotetrahedron Gyrogeometry; Part V: Hyperbolic Ellipses and Hyperbolas; 12. Gyroellipses and Gyrohyperbolas ; Part VI: Thomas Precession; 13. Thomas Precession; Notations and Special Symbols; Bibliography |
Record Nr. | UNINA-9910787261603321 |
Ungar Abraham A. | ||
Boca Raton : , : Taylor & Francis, , [2015] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Analytic hyperbolic geometry in N dimensions : an introduction / / Abraham A. Ungar, Mathematics Department, North Dakota State University, Fargo, North Dakota, USA |
Autore | Ungar Abraham A. |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Boca Raton : , : Taylor & Francis, , [2015] |
Descrizione fisica | 1 online resource (616 p.) |
Disciplina | 516.9 |
Collana | A Science Publishers Book |
Soggetto topico | Geometry, Hyperbolic |
ISBN |
0-429-17474-8
1-4822-3668-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; Preface; Contents; List of Figures; Author's Biography; 1. Introduction; Part I: Einstein Gyrogroups and Gyrovector Spaces; 2. Einstein Gyrogroups; 3. Einstein Gyrovector Spaces ; 4. Relativistic Mass Meets Hyperbolic Geometry; Part II: Mathematical Tools for Hyperbolic Geometry; 5. Barycentric and Gyrobarycentric Coordinates; 6. Gyroparallelograms and Gyroparallelotopes; 7. Gyrotrigonometry; Part III: Hyperbolic Triangles and Circles; 8. Gyrotriangles and Gyrocircles; 9. Gyrocircle Theorems; Part IV: Hyperbolic Simplices, Hyperplanes and Hyperspheres in N Dimensions
10. Gyrosimplex Gyrogeometry11. Gyrotetrahedron Gyrogeometry; Part V: Hyperbolic Ellipses and Hyperbolas; 12. Gyroellipses and Gyrohyperbolas ; Part VI: Thomas Precession; 13. Thomas Precession; Notations and Special Symbols; Bibliography |
Record Nr. | UNINA-9910820575903321 |
Ungar Abraham A. | ||
Boca Raton : , : Taylor & Francis, , [2015] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|