Differential forms in algebraic topology / Raoul Bott, Loring W. Tu |
Autore | Bott, Raoul <1923-2005> |
Pubbl/distr/stampa | New York, : Springer, 1982 |
Descrizione fisica | xiv, 331 p. : ill. ; 24 cm |
Altri autori (Persone) | Tu, Loring W. |
Soggetto topico |
14F40 - de Rham cohomology and algebraic geometry [MSC 2020]
57Rxx - Differential topology [MSC 2020] 58Axx - General theory of differentiable manifolds [MSC 2020] |
Soggetto non controllato |
Algebraic
Algebraic Topology Characteristic class Cohomology Cohomology theory Homology Homotopy Homotopy theory Topology |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00268497 |
Bott, Raoul <1923-2005>
![]() |
||
New York, : Springer, 1982 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Effective Kan Fibrations in Simplicial Sets / Benno van den Berg, Eric Faber |
Autore | Berg, Benno van den |
Pubbl/distr/stampa | Cham, : Springer, 2022 |
Descrizione fisica | x, 230 p. : ill. ; 24 cm |
Altri autori (Persone) | Faber, Eric |
Soggetto topico | 18-XX - Category theory; homological algebra [MSC 2020] |
Soggetto non controllato |
Constructive mathematics
Homotopy Type Theory Homotopy theory Kan Complexes Simplicial Sets |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0260795 |
Berg, Benno van den
![]() |
||
Cham, : Springer, 2022 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Effective Kan Fibrations in Simplicial Sets / Benno van den Berg, Eric Faber |
Autore | Berg, Benno van den |
Pubbl/distr/stampa | Cham, : Springer, 2022 |
Descrizione fisica | x, 230 p. : ill. ; 24 cm |
Altri autori (Persone) | Faber, Eric |
Soggetto topico | 18-XX - Category theory; homological algebra [MSC 2020] |
Soggetto non controllato |
Constructive mathematics
Homotopy Type Theory Homotopy theory Kan Complexes Simplicial Sets |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00260795 |
Berg, Benno van den
![]() |
||
Cham, : Springer, 2022 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Equivariant Stable Homotopy Theory / L. Gaunce Lewis jr., J. Peter May, Mark Steinberger |
Autore | Lewis, L. Gaunce jr. |
Pubbl/distr/stampa | Berlin, : Springer, 1986 |
Descrizione fisica | ix, 538 p. ; 24 cm |
Altri autori (Persone) |
May, Peter
Steinberger, Mark |
Soggetto topico |
55-XX - Algebraic topology [MSC 2020]
55P91 - Equivariant homotopy theory in algebraic topology [MSC 2020] 57S10 - Compact groups of homeomorphisms [MSC 2020] 55P42 - Stable homotopy theory, spectra [MSC 2020] 18A40 - Adjoint functors (universal constructions, reflective subcategories, Kan extensions, etc.) [MSC 2020] 55N20 - Generalized (extraordinary) homology and cohomology theories in algebraic topology [MSC 2020] |
Soggetto non controllato |
Duality
Homology Homotopy Homotopy theory |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0263769 |
Lewis, L. Gaunce jr.
![]() |
||
Berlin, : Springer, 1986 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Equivariant Stable Homotopy Theory / L. Gaunce Lewis jr., J. Peter May, Mark Steinberger |
Autore | Lewis, L. Gaunce jr. |
Pubbl/distr/stampa | Berlin, : Springer, 1986 |
Descrizione fisica | ix, 538 p. ; 24 cm |
Altri autori (Persone) |
May, Peter
Steinberger, Mark |
Soggetto topico |
18A40 - Adjoint functors (universal constructions, reflective subcategories, Kan extensions, etc.) [MSC 2020]
55-XX - Algebraic topology [MSC 2020] 55N20 - Generalized (extraordinary) homology and cohomology theories in algebraic topology [MSC 2020] 55P42 - Stable homotopy theory, spectra [MSC 2020] 55P91 - Equivariant homotopy theory in algebraic topology [MSC 2020] 57S10 - Compact groups of homeomorphisms [MSC 2020] |
Soggetto non controllato |
Duality
Homology Homotopy Homotopy theory |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00263769 |
Lewis, L. Gaunce jr.
![]() |
||
Berlin, : Springer, 1986 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Fixed Point Theory of Parametrized Equivariant Maps / Hanno Ulrich |
Autore | Ulrich, Hanno |
Pubbl/distr/stampa | Berlin, : Springer, 1988 |
Descrizione fisica | x, 154 p. ; 24 cm |
Soggetto topico |
55-XX - Algebraic topology [MSC 2020]
55M20 - Fixed-points and coincidences in algebraic topology [MSC 2020] 54H25 - Fixed-point and coincidence theorems (topological aspects) [MSC 2020] 55P91 - Equivariant homotopy theory in algebraic topology [MSC 2020] 55N91 - Equivariant homology and cohomology in algebraic topology [MSC 2020] 55R91 - Equivariant fiber spaces and bundles in algebraic topology [MSC 2020] |
Soggetto non controllato |
Algebraic Topology
Cohomology Cohomology theory Fibrations Fixed Point Theory Homology Homotopy Homotopy theory K-theory Point-set topology |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0265056 |
Ulrich, Hanno
![]() |
||
Berlin, : Springer, 1988 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Fixed Point Theory of Parametrized Equivariant Maps / Hanno Ulrich |
Autore | Ulrich, Hanno |
Pubbl/distr/stampa | Berlin, : Springer, 1988 |
Descrizione fisica | x, 154 p. ; 24 cm |
Soggetto topico |
54H25 - Fixed-point and coincidence theorems (topological aspects) [MSC 2020]
55-XX - Algebraic topology [MSC 2020] 55M20 - Fixed-points and coincidences in algebraic topology [MSC 2020] 55N91 - Equivariant homology and cohomology in algebraic topology [MSC 2020] 55P91 - Equivariant homotopy theory in algebraic topology [MSC 2020] 55R91 - Equivariant fiber spaces and bundles in algebraic topology [MSC 2020] |
Soggetto non controllato |
Algebraic Topology
Cohomology Cohomology theory Fibrations Fixed Point Theory Homology Homotopy Homotopy theory K-theory Point-set topology |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00265056 |
Ulrich, Hanno
![]() |
||
Berlin, : Springer, 1988 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Fundamentals of algebraic topology / Steven H. Weintraub |
Autore | Weintraub, Steven H. |
Pubbl/distr/stampa | New York, : Springer, 2014 |
Descrizione fisica | X, 163 p. : ill. ; 24 cm |
Soggetto topico |
55-XX - Algebraic topology [MSC 2020]
55N10 - Singular homology and cohomology theory [MSC 2020] |
Soggetto non controllato |
Algebraic Topology
Homology Theory Homotopy theory Manifolds |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0103023 |
Weintraub, Steven H.
![]() |
||
New York, : Springer, 2014 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Fundamentals of algebraic topology / Steven H. Weintraub |
Autore | Weintraub, Steven H. |
Pubbl/distr/stampa | New York, : Springer, 2014 |
Descrizione fisica | X, 163 p. : ill. ; 24 cm |
Soggetto topico |
55-XX - Algebraic topology [MSC 2020]
55N10 - Singular homology and cohomology theory [MSC 2020] |
Soggetto non controllato |
Algebraic Topology
Homology Theory Homotopy theory Manifolds |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00103023 |
Weintraub, Steven H.
![]() |
||
New York, : Springer, 2014 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
General Topology and Homotopy Theory / I. M. James |
Autore | James, Ioan M. |
Pubbl/distr/stampa | New York, : Springer-Verlag, 1984 |
Descrizione fisica | vii, 248 p. ; 24 cm |
Soggetto topico |
55-XX - Algebraic topology [MSC 2020]
18-XX - Category theory; homological algebra [MSC 2020] 22-XX - Topological groups, Lie groups [MSC 2020] 54H15 - Transformation groups and semigroups (topological aspects) [MSC 2020] 54-XX - General topology [MSC 2020] 55Pxx - Homotopy theory [MSC 2020] 54C55 - Absolute neighborhood extensor, absolute extensor, absolute neighborhood retract (ANR), absolute retract spaces (general properties) [MSC 2020] 54D20 - Noncompact covering properties (paracompact, Lindelöf, etc.) [MSC 2020] |
Soggetto non controllato |
Cofibration
Fibrations Group theory Homotopy Homotopy theory |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0268660 |
James, Ioan M.
![]() |
||
New York, : Springer-Verlag, 1984 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|