top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Entropy stable wall boundary conditions for the compressible Navier-Stokes equations / / Matteo Parsani, Mark H. Carpenter, and Eric J. Nielsen
Entropy stable wall boundary conditions for the compressible Navier-Stokes equations / / Matteo Parsani, Mark H. Carpenter, and Eric J. Nielsen
Autore Parsani Matteo
Pubbl/distr/stampa Hampton, Virginia : , : National Aeronautics and Space Administration, Langley Research Center, , June 2014
Descrizione fisica 1 online resource (47 pages) : color illustrations
Collana NASA/TM
Soggetto topico Navier-Stokes equation
Galerkin method
Supersonic flow
Three dimensional flow
Finite element method
Finite volume method
Finite difference theory
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910702739303321
Parsani Matteo  
Hampton, Virginia : , : National Aeronautics and Space Administration, Langley Research Center, , June 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The essentials of finite element modeling and adaptive refinement : for beginning analysts to advanced researchers in solid mechanics / / John O. Dow
The essentials of finite element modeling and adaptive refinement : for beginning analysts to advanced researchers in solid mechanics / / John O. Dow
Autore Dow John O.
Pubbl/distr/stampa New York : , : Momentum Press, LLC, , [2012]
Descrizione fisica 1 online resource (294 p.)
Disciplina 620.00151535
Soggetto topico Finite element method
Finite element method - Mathematical models
Soggetto genere / forma Electronic books.
ISBN 1-283-89596-X
1-60650-334-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- 1. Introduction -- 1.1 Problem definition -- 1.2 Overall objectives -- 1.3 Specific tasks -- 1.4 The central role of the interpolation functions -- 1.5 A closer look at the interpolation functions -- 1.6 Physically interpretable interpolation functions in action -- 1.7 The overall significance of the physically interpretable notation -- 1.8 Examples of model refinement and the need for adaptive refinement -- 1.9 Examples of adaptive refinement and error analysis -- 1.10 Summary -- 1.11 References --
2. An overview of finite element modeling characteristics -- 2.1 Introduction -- 2.2 Characteristics of exact finite element results -- 2.3 More demanding loading conditions -- 2.4 Discretization errors in an initial model -- 2.5 Error reduction and uniform refinement -- 2.6 Error reduction and adaptive refinement -- 2.7 The effect of element modeling capability on discretization errors -- 2.8 Summary and future applications -- 2.9 References --
2A. Elements of two-dimensional modeling -- 2A1. Introduction -- 2A2. Submodeling refinement strategy -- 2A3. Initial model -- 2A4. Adaptive refinement results -- 2A5. Summary -- 2A6. References --
2B. Exact solutions for two longitudinal bar problems -- 2B1. Introduction -- 2B2. General solution of the governing differential equation -- 2B3. Application of a free boundary condition -- 2B4. Second application of separation of variables -- 2B5. Solution for a constant distributed load -- 2B6. Solution for a linearly varying distributed load -- 2B7. Summary --
3. Identification of finite element strain modeling capabilities -- 3.1 Introduction -- 3.2 Identification of the strain modeling capabilities of a three-node bar element -- 3.3 An introduction to physically interpretable interpolation polynomials -- 3.4 Identification of the physically interpretable coefficients -- 3.5 The decomposition of element displacements into strain components -- 3.6 A common basis for the finite element and finite difference methods -- 3.7 Modeling capabilities of the four-node bar element -- 3.8 Identification and evaluation of element behavior -- 3.9 Evaluation of a two-dimensional strain model -- 3.10 Analysis by inspection in two dimensions -- 3.11 Summary and conclusion -- 3.12 Reference --
4. The source and quantification of discretization errors -- 4.1 Introduction -- 4.2 Background concepts, the residual approach to error analysis -- 4.3 Quantifying the failure to satisfy point-wise equilibrium -- 4.4 Every finite element solution is an exact solution to some problem -- 4.5 Summary and conclusion -- 4.6 Reference --
5. Modeling inefficiency in irregular isoparametric elements -- 5.1 Introduction -- 5.2 An overview of isoparametric element strain modeling characteristics -- 5.3 Essential elements of the isoparametric method -- 5.4 The source of strain modeling errors in isoparametric elements -- 5.5 Strain modeling characteristics of isoparametric elements -- 5.6 Modeling errors in irregular isoparametric elements -- 5.7 Results for a series of uniform refinements -- 5.8 Summary and conclusion -- 5.9 References --
6. Introduction to adaptive refinement -- 6.1 Introduction -- 6.2 Physically interpretable error estimators -- 6.3 A model refinement strategy -- 6.4 A demonstration of uniform refinement -- 6.5 A demonstration of adaptive refinement -- 6.6 An application of an absolute error estimator -- 6.7 Summary -- 6.8 References --
7. Strain energy-based error estimators, the Z/Z error estimator -- 7.1 Introduction -- 7.2 The basis of the Z/Z error estimator, a smoothed strain representation -- 7.3 The Z/Z elemental strain energy error estimator -- 7.4 The Z/Z error estimator -- 7.5 A modified locally normalized Z/Z error estimator -- 7.6 A demonstration of the Z/Z error estimator -- 7.7 A demonstration of adaptive refinement -- 7.8 Summary and conclusion -- 7.9 References --
7A. Gauss points, super convergent strains, and Chebyshev polynomials -- 7A1. Introduction -- 7A2. Modeling behavior of three-node elements -- 7A3. Gauss points and Chebyshev polynomials -- 7A4. References --
7B. An unsuccessful example of adaptive refinement -- 7B1. Introduction -- 7B2. Example 1 -- 7B3. Example 2 -- 7B4. Summary --
8. A high resolution point-wise residual error estimator -- 8.1 Introduction -- 8.2 An overview of the point-wise residual error estimator -- 8.3 The theoretical basis for the point-wise residual error estimator -- 8.4 Computation of the point-wise residual error estimator -- 8.5 Formulation of the finite difference operators -- 8.6 The formulation of the point-wise residual error estimator -- 8.7 A demonstration of the point-wise finite difference error estimator -- 8.8 A demonstration of adaptive refinement -- 8.9 A temptation to avoid and a reason for using child meshes -- 8.10 Summary and conclusion -- 8.11 Reference --
9. Modeling characteristics and efficiencies of higher order elements -- 9.1 Introduction -- 9.2 Adaptive refinement examples (4.0% termination criterion) -- 9.3 Adaptive refinement examples (0.4% termination criterion) -- 9.4 In-situ identification of the five-node element modeling behavior -- 9.5 Strain contributions of the basis set components -- 9.6 Comparative modeling behavior of four-node elements -- 9.7 Summary, conclusion, and recommendations for future work --
10. Formulation of a 10-node quadratic strain element -- 10.1 Introduction -- 10.2 Identification of the linearly independent strain gradient quantities -- 10.3 Identification of the elemental strain modeling characteristics -- 10.4 Formulation of the strain energy expression -- 10.5 Identification and evaluation of the required integrals -- 10.6 Expansion of the strain energy kernel -- 10.7 Formulation of the stiffness matrix -- 10.8 Summary and conclusion --
10A. A numerical example for a 10-node stiffness matrix -- 10A1. Introduction -- 10A2. Element geometry and nodal numbering -- 10A3. Formulation of the transformation to nodal displacement coordinates -- 10A4. Formulation and evaluation of the strain energy expression -- 10A5. Formulation of the stiffness matrix -- 10A6. Summary and conclusion --
10B. Matlab formulation of the 10-node element stiffness matrix -- 10B1. Introduction -- 10B2. Driver program for forming the stiffness matrix for a 10-node element -- 10B3. Form phi and phi inverse for 10-node element -- 10B4. Form integrals in stiffness matrix using Green's theorem -- 10B5. Form strain energy kernel for 10-node element -- 10B6. Plot geometry and nodes for 10-node element -- 10B7. Function to transform Matlab matrices to form for use in Word --
11. Performance-based refinement guides -- 11.1 Introduction -- 11.2 Theoretical overview for finite difference smoothing -- 11.3 Development of the refinement guide -- 11.4 Problem description -- 11.5 Examples of adaptive refinement -- 11.6 An efficient refinement guide based on nodal averaging -- 11.7 Further comparisons of the refinement guides -- 11.8 Summary and conclusion -- 11.9 References --
12. Summary and research recommendations -- 12.1 Introduction -- 12.2 An overview of advances in adaptive refinement -- 12.3 Displacement interpolation functions revisited: a reinterpretation -- 12.4 Advances in the finite element method -- 12.5 Advances in the finite difference method -- 12.6 Recommendations for future work and research opportunities -- 12.7 Reference --
Index.
Record Nr. UNINA-9910464176403321
Dow John O.  
New York : , : Momentum Press, LLC, , [2012]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The essentials of finite element modeling and adaptive refinement : for beginning analysts to advanced researchers in solid mechanics / / John O. Dow
The essentials of finite element modeling and adaptive refinement : for beginning analysts to advanced researchers in solid mechanics / / John O. Dow
Autore Dow John O.
Pubbl/distr/stampa New York : , : Momentum Press, LLC, , [2012]
Descrizione fisica 1 online resource (294 p.)
Disciplina 620.00151535
Soggetto topico Finite element method
Finite element method - Mathematical models
ISBN 1-283-89596-X
1-60650-334-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- 1. Introduction -- 1.1 Problem definition -- 1.2 Overall objectives -- 1.3 Specific tasks -- 1.4 The central role of the interpolation functions -- 1.5 A closer look at the interpolation functions -- 1.6 Physically interpretable interpolation functions in action -- 1.7 The overall significance of the physically interpretable notation -- 1.8 Examples of model refinement and the need for adaptive refinement -- 1.9 Examples of adaptive refinement and error analysis -- 1.10 Summary -- 1.11 References --
2. An overview of finite element modeling characteristics -- 2.1 Introduction -- 2.2 Characteristics of exact finite element results -- 2.3 More demanding loading conditions -- 2.4 Discretization errors in an initial model -- 2.5 Error reduction and uniform refinement -- 2.6 Error reduction and adaptive refinement -- 2.7 The effect of element modeling capability on discretization errors -- 2.8 Summary and future applications -- 2.9 References --
2A. Elements of two-dimensional modeling -- 2A1. Introduction -- 2A2. Submodeling refinement strategy -- 2A3. Initial model -- 2A4. Adaptive refinement results -- 2A5. Summary -- 2A6. References --
2B. Exact solutions for two longitudinal bar problems -- 2B1. Introduction -- 2B2. General solution of the governing differential equation -- 2B3. Application of a free boundary condition -- 2B4. Second application of separation of variables -- 2B5. Solution for a constant distributed load -- 2B6. Solution for a linearly varying distributed load -- 2B7. Summary --
3. Identification of finite element strain modeling capabilities -- 3.1 Introduction -- 3.2 Identification of the strain modeling capabilities of a three-node bar element -- 3.3 An introduction to physically interpretable interpolation polynomials -- 3.4 Identification of the physically interpretable coefficients -- 3.5 The decomposition of element displacements into strain components -- 3.6 A common basis for the finite element and finite difference methods -- 3.7 Modeling capabilities of the four-node bar element -- 3.8 Identification and evaluation of element behavior -- 3.9 Evaluation of a two-dimensional strain model -- 3.10 Analysis by inspection in two dimensions -- 3.11 Summary and conclusion -- 3.12 Reference --
4. The source and quantification of discretization errors -- 4.1 Introduction -- 4.2 Background concepts, the residual approach to error analysis -- 4.3 Quantifying the failure to satisfy point-wise equilibrium -- 4.4 Every finite element solution is an exact solution to some problem -- 4.5 Summary and conclusion -- 4.6 Reference --
5. Modeling inefficiency in irregular isoparametric elements -- 5.1 Introduction -- 5.2 An overview of isoparametric element strain modeling characteristics -- 5.3 Essential elements of the isoparametric method -- 5.4 The source of strain modeling errors in isoparametric elements -- 5.5 Strain modeling characteristics of isoparametric elements -- 5.6 Modeling errors in irregular isoparametric elements -- 5.7 Results for a series of uniform refinements -- 5.8 Summary and conclusion -- 5.9 References --
6. Introduction to adaptive refinement -- 6.1 Introduction -- 6.2 Physically interpretable error estimators -- 6.3 A model refinement strategy -- 6.4 A demonstration of uniform refinement -- 6.5 A demonstration of adaptive refinement -- 6.6 An application of an absolute error estimator -- 6.7 Summary -- 6.8 References --
7. Strain energy-based error estimators, the Z/Z error estimator -- 7.1 Introduction -- 7.2 The basis of the Z/Z error estimator, a smoothed strain representation -- 7.3 The Z/Z elemental strain energy error estimator -- 7.4 The Z/Z error estimator -- 7.5 A modified locally normalized Z/Z error estimator -- 7.6 A demonstration of the Z/Z error estimator -- 7.7 A demonstration of adaptive refinement -- 7.8 Summary and conclusion -- 7.9 References --
7A. Gauss points, super convergent strains, and Chebyshev polynomials -- 7A1. Introduction -- 7A2. Modeling behavior of three-node elements -- 7A3. Gauss points and Chebyshev polynomials -- 7A4. References --
7B. An unsuccessful example of adaptive refinement -- 7B1. Introduction -- 7B2. Example 1 -- 7B3. Example 2 -- 7B4. Summary --
8. A high resolution point-wise residual error estimator -- 8.1 Introduction -- 8.2 An overview of the point-wise residual error estimator -- 8.3 The theoretical basis for the point-wise residual error estimator -- 8.4 Computation of the point-wise residual error estimator -- 8.5 Formulation of the finite difference operators -- 8.6 The formulation of the point-wise residual error estimator -- 8.7 A demonstration of the point-wise finite difference error estimator -- 8.8 A demonstration of adaptive refinement -- 8.9 A temptation to avoid and a reason for using child meshes -- 8.10 Summary and conclusion -- 8.11 Reference --
9. Modeling characteristics and efficiencies of higher order elements -- 9.1 Introduction -- 9.2 Adaptive refinement examples (4.0% termination criterion) -- 9.3 Adaptive refinement examples (0.4% termination criterion) -- 9.4 In-situ identification of the five-node element modeling behavior -- 9.5 Strain contributions of the basis set components -- 9.6 Comparative modeling behavior of four-node elements -- 9.7 Summary, conclusion, and recommendations for future work --
10. Formulation of a 10-node quadratic strain element -- 10.1 Introduction -- 10.2 Identification of the linearly independent strain gradient quantities -- 10.3 Identification of the elemental strain modeling characteristics -- 10.4 Formulation of the strain energy expression -- 10.5 Identification and evaluation of the required integrals -- 10.6 Expansion of the strain energy kernel -- 10.7 Formulation of the stiffness matrix -- 10.8 Summary and conclusion --
10A. A numerical example for a 10-node stiffness matrix -- 10A1. Introduction -- 10A2. Element geometry and nodal numbering -- 10A3. Formulation of the transformation to nodal displacement coordinates -- 10A4. Formulation and evaluation of the strain energy expression -- 10A5. Formulation of the stiffness matrix -- 10A6. Summary and conclusion --
10B. Matlab formulation of the 10-node element stiffness matrix -- 10B1. Introduction -- 10B2. Driver program for forming the stiffness matrix for a 10-node element -- 10B3. Form phi and phi inverse for 10-node element -- 10B4. Form integrals in stiffness matrix using Green's theorem -- 10B5. Form strain energy kernel for 10-node element -- 10B6. Plot geometry and nodes for 10-node element -- 10B7. Function to transform Matlab matrices to form for use in Word --
11. Performance-based refinement guides -- 11.1 Introduction -- 11.2 Theoretical overview for finite difference smoothing -- 11.3 Development of the refinement guide -- 11.4 Problem description -- 11.5 Examples of adaptive refinement -- 11.6 An efficient refinement guide based on nodal averaging -- 11.7 Further comparisons of the refinement guides -- 11.8 Summary and conclusion -- 11.9 References --
12. Summary and research recommendations -- 12.1 Introduction -- 12.2 An overview of advances in adaptive refinement -- 12.3 Displacement interpolation functions revisited: a reinterpretation -- 12.4 Advances in the finite element method -- 12.5 Advances in the finite difference method -- 12.6 Recommendations for future work and research opportunities -- 12.7 Reference --
Index.
Record Nr. UNINA-9910789481503321
Dow John O.  
New York : , : Momentum Press, LLC, , [2012]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The essentials of finite element modeling and adaptive refinement : for beginning analysts to advanced researchers in solid mechanics / / John O. Dow
The essentials of finite element modeling and adaptive refinement : for beginning analysts to advanced researchers in solid mechanics / / John O. Dow
Autore Dow John O.
Pubbl/distr/stampa New York : , : Momentum Press, LLC, , [2012]
Descrizione fisica 1 online resource (294 p.)
Disciplina 620.00151535
Soggetto topico Finite element method
Finite element method - Mathematical models
ISBN 1-283-89596-X
1-60650-334-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- 1. Introduction -- 1.1 Problem definition -- 1.2 Overall objectives -- 1.3 Specific tasks -- 1.4 The central role of the interpolation functions -- 1.5 A closer look at the interpolation functions -- 1.6 Physically interpretable interpolation functions in action -- 1.7 The overall significance of the physically interpretable notation -- 1.8 Examples of model refinement and the need for adaptive refinement -- 1.9 Examples of adaptive refinement and error analysis -- 1.10 Summary -- 1.11 References --
2. An overview of finite element modeling characteristics -- 2.1 Introduction -- 2.2 Characteristics of exact finite element results -- 2.3 More demanding loading conditions -- 2.4 Discretization errors in an initial model -- 2.5 Error reduction and uniform refinement -- 2.6 Error reduction and adaptive refinement -- 2.7 The effect of element modeling capability on discretization errors -- 2.8 Summary and future applications -- 2.9 References --
2A. Elements of two-dimensional modeling -- 2A1. Introduction -- 2A2. Submodeling refinement strategy -- 2A3. Initial model -- 2A4. Adaptive refinement results -- 2A5. Summary -- 2A6. References --
2B. Exact solutions for two longitudinal bar problems -- 2B1. Introduction -- 2B2. General solution of the governing differential equation -- 2B3. Application of a free boundary condition -- 2B4. Second application of separation of variables -- 2B5. Solution for a constant distributed load -- 2B6. Solution for a linearly varying distributed load -- 2B7. Summary --
3. Identification of finite element strain modeling capabilities -- 3.1 Introduction -- 3.2 Identification of the strain modeling capabilities of a three-node bar element -- 3.3 An introduction to physically interpretable interpolation polynomials -- 3.4 Identification of the physically interpretable coefficients -- 3.5 The decomposition of element displacements into strain components -- 3.6 A common basis for the finite element and finite difference methods -- 3.7 Modeling capabilities of the four-node bar element -- 3.8 Identification and evaluation of element behavior -- 3.9 Evaluation of a two-dimensional strain model -- 3.10 Analysis by inspection in two dimensions -- 3.11 Summary and conclusion -- 3.12 Reference --
4. The source and quantification of discretization errors -- 4.1 Introduction -- 4.2 Background concepts, the residual approach to error analysis -- 4.3 Quantifying the failure to satisfy point-wise equilibrium -- 4.4 Every finite element solution is an exact solution to some problem -- 4.5 Summary and conclusion -- 4.6 Reference --
5. Modeling inefficiency in irregular isoparametric elements -- 5.1 Introduction -- 5.2 An overview of isoparametric element strain modeling characteristics -- 5.3 Essential elements of the isoparametric method -- 5.4 The source of strain modeling errors in isoparametric elements -- 5.5 Strain modeling characteristics of isoparametric elements -- 5.6 Modeling errors in irregular isoparametric elements -- 5.7 Results for a series of uniform refinements -- 5.8 Summary and conclusion -- 5.9 References --
6. Introduction to adaptive refinement -- 6.1 Introduction -- 6.2 Physically interpretable error estimators -- 6.3 A model refinement strategy -- 6.4 A demonstration of uniform refinement -- 6.5 A demonstration of adaptive refinement -- 6.6 An application of an absolute error estimator -- 6.7 Summary -- 6.8 References --
7. Strain energy-based error estimators, the Z/Z error estimator -- 7.1 Introduction -- 7.2 The basis of the Z/Z error estimator, a smoothed strain representation -- 7.3 The Z/Z elemental strain energy error estimator -- 7.4 The Z/Z error estimator -- 7.5 A modified locally normalized Z/Z error estimator -- 7.6 A demonstration of the Z/Z error estimator -- 7.7 A demonstration of adaptive refinement -- 7.8 Summary and conclusion -- 7.9 References --
7A. Gauss points, super convergent strains, and Chebyshev polynomials -- 7A1. Introduction -- 7A2. Modeling behavior of three-node elements -- 7A3. Gauss points and Chebyshev polynomials -- 7A4. References --
7B. An unsuccessful example of adaptive refinement -- 7B1. Introduction -- 7B2. Example 1 -- 7B3. Example 2 -- 7B4. Summary --
8. A high resolution point-wise residual error estimator -- 8.1 Introduction -- 8.2 An overview of the point-wise residual error estimator -- 8.3 The theoretical basis for the point-wise residual error estimator -- 8.4 Computation of the point-wise residual error estimator -- 8.5 Formulation of the finite difference operators -- 8.6 The formulation of the point-wise residual error estimator -- 8.7 A demonstration of the point-wise finite difference error estimator -- 8.8 A demonstration of adaptive refinement -- 8.9 A temptation to avoid and a reason for using child meshes -- 8.10 Summary and conclusion -- 8.11 Reference --
9. Modeling characteristics and efficiencies of higher order elements -- 9.1 Introduction -- 9.2 Adaptive refinement examples (4.0% termination criterion) -- 9.3 Adaptive refinement examples (0.4% termination criterion) -- 9.4 In-situ identification of the five-node element modeling behavior -- 9.5 Strain contributions of the basis set components -- 9.6 Comparative modeling behavior of four-node elements -- 9.7 Summary, conclusion, and recommendations for future work --
10. Formulation of a 10-node quadratic strain element -- 10.1 Introduction -- 10.2 Identification of the linearly independent strain gradient quantities -- 10.3 Identification of the elemental strain modeling characteristics -- 10.4 Formulation of the strain energy expression -- 10.5 Identification and evaluation of the required integrals -- 10.6 Expansion of the strain energy kernel -- 10.7 Formulation of the stiffness matrix -- 10.8 Summary and conclusion --
10A. A numerical example for a 10-node stiffness matrix -- 10A1. Introduction -- 10A2. Element geometry and nodal numbering -- 10A3. Formulation of the transformation to nodal displacement coordinates -- 10A4. Formulation and evaluation of the strain energy expression -- 10A5. Formulation of the stiffness matrix -- 10A6. Summary and conclusion --
10B. Matlab formulation of the 10-node element stiffness matrix -- 10B1. Introduction -- 10B2. Driver program for forming the stiffness matrix for a 10-node element -- 10B3. Form phi and phi inverse for 10-node element -- 10B4. Form integrals in stiffness matrix using Green's theorem -- 10B5. Form strain energy kernel for 10-node element -- 10B6. Plot geometry and nodes for 10-node element -- 10B7. Function to transform Matlab matrices to form for use in Word --
11. Performance-based refinement guides -- 11.1 Introduction -- 11.2 Theoretical overview for finite difference smoothing -- 11.3 Development of the refinement guide -- 11.4 Problem description -- 11.5 Examples of adaptive refinement -- 11.6 An efficient refinement guide based on nodal averaging -- 11.7 Further comparisons of the refinement guides -- 11.8 Summary and conclusion -- 11.9 References --
12. Summary and research recommendations -- 12.1 Introduction -- 12.2 An overview of advances in adaptive refinement -- 12.3 Displacement interpolation functions revisited: a reinterpretation -- 12.4 Advances in the finite element method -- 12.5 Advances in the finite difference method -- 12.6 Recommendations for future work and research opportunities -- 12.7 Reference --
Index.
Record Nr. UNINA-9910817581503321
Dow John O.  
New York : , : Momentum Press, LLC, , [2012]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Evaluation of MARC for the analysis of rotating composite blades / / Karen F. Bartos and Michael A. Ernst
Evaluation of MARC for the analysis of rotating composite blades / / Karen F. Bartos and Michael A. Ernst
Autore Bartos Karen F.
Pubbl/distr/stampa [Washington, D.C.] : , : National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, , March 1993
Descrizione fisica 1 online resource (24 pages) : illustrations
Collana NASA/TM
Soggetto topico Blades
Composite materials
Centrifugal force
Eigenvalues
Finite element method
Nonlinearity
Prop-fan technology
Soggetto genere / forma Online resources.
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910707954403321
Bartos Karen F.  
[Washington, D.C.] : , : National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, , March 1993
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Exhibit D modular design attitude control system study : progress report / / F. Chichester
Exhibit D modular design attitude control system study : progress report / / F. Chichester
Autore Chichester F. D.
Pubbl/distr/stampa Marshall Space Flight Center, Alabama : , : George C. Marshall Space Flight Center, , January-February 1984
Descrizione fisica 1 online resource (68 pages) : illustrations
Collana NASA/CR
Soggetto topico Attitude control
Space platforms
Many body problem
NASTRAN
Finite element method
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Exhibit D modular design attitude control system study
Record Nr. UNINA-9910709990803321
Chichester F. D.  
Marshall Space Flight Center, Alabama : , : George C. Marshall Space Flight Center, , January-February 1984
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Experimental and analytical characterization of the macromechanical response for triaxial braided composite materials / / Justin D. Littell
Experimental and analytical characterization of the macromechanical response for triaxial braided composite materials / / Justin D. Littell
Autore Littell Justin D.
Pubbl/distr/stampa Cleveland, Ohio : , : National Aeronautics and Space Administration, Glenn Research Center, , December 2013
Descrizione fisica 1 online resource (iv, 105 pages) : illustrations (some color)
Collana NASA/CR
Soggetto topico Composite materials
Braided composites
Computerized simulation
Carbon fibers
Engine design
Fiber-matrix interfaces
Finite element method
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910702672003321
Littell Justin D.  
Cleveland, Ohio : , : National Aeronautics and Space Administration, Glenn Research Center, , December 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
An experimental and computational study of steel moment connections under a column removal scenario / / Fahim Sadek ... [and others]
An experimental and computational study of steel moment connections under a column removal scenario / / Fahim Sadek ... [and others]
Pubbl/distr/stampa Gaithersburg, MD : , : U.S. Dept. of Commerce, National Institute of Standards and Technology, , 2010
Descrizione fisica 1 online resource (xiv, 78 pages) : illustrations (color)
Altri autori (Persone) SadekFahim
Collana NIST technical note
Soggetto topico Finite element method
Girders
Structural failures
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910711258903321
Gaithersburg, MD : , : U.S. Dept. of Commerce, National Institute of Standards and Technology, , 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Explicit finite element modeling of multilayer composite fabric for gas turbine engine containment systems [[electronic resource] ] : final report
Explicit finite element modeling of multilayer composite fabric for gas turbine engine containment systems [[electronic resource] ] : final report
Pubbl/distr/stampa Washington, D.C. : , : U.S. Dept. of Transportation, Federal Aviation Administration, Office of Aviation Research, , [2004]
Descrizione fisica 4 volumes : digital, PDF file
Soggetto topico Aircraft gas-turbines - Safety measures - Testing
Airplanes - Turbine-propeller engines - Impact testing
Fibrous composites - Impact testing
Ballistic fabrics - Testing
Finite element method
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto pt. 1. Static tests and modeling -- pt. 2. Ballistic impact testing -- pt. 3. Model development and simulation of experiments -- pt. 4. Model simulation for ballistic tests, engine fan blade-out, and generic engine.
Altri titoli varianti Explicit finite element modeling of multilayer composite fabric for gas turbine engine containment systems
Record Nr. UNINA-9910694692803321
Washington, D.C. : , : U.S. Dept. of Transportation, Federal Aviation Administration, Office of Aviation Research, , [2004]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Extended finite element method : theory and applications / / Amir R. Khoei
Extended finite element method : theory and applications / / Amir R. Khoei
Autore Khoei Amir R.
Pubbl/distr/stampa Chichester, England : , : Wiley, , 2015
Descrizione fisica 1 online resource (602 p.)
Disciplina 620.1/1260151825
Collana Wiley Series in Computational Mechanics
Soggetto topico Finite element method
Numerical analysis
ISBN 1-118-86968-0
1-118-86969-9
1-118-86967-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title Page; Copyright; Contents; Series Preface; Preface; Chapter 1 Introduction; 1.1 Introduction; 1.2 An Enriched Finite Element Method; 1.3 A Review on X-FEM: Development and Applications; 1.3.1 CouplingX-FEM with the Level-Set Method; 1.3.2 Linear Elastic Fracture Mechanics (LEFM); 1.3.3 Cohesive Fracture Mechanics; 1.3.4 Composite Materials and Material In homogeneities; 1.3.5 Plasticity, Damage, and Fatigue Problems; 1.3.6 Shear Band Localization; 1.3.7 Fluid-Structure Interaction; 1.3.8 Fluid Flow in Fractured Porous Media; 1.3.9 Fluid Flow and Fluid Mechanics Problems
1.3.10 Phase Transition and Solidification 1.3.11 Thermal and Thermo-Mechanical Problems; 1.3.12 Plates and Shells; 1.3.13 Contact Problems; 1.3.14 Topology Optimization; 1.3.15 Piezoelectric and Magneto-Electroelastic Problems; 1.3.16 Multi-Scale Modeling; Chapter 2 Extended Finite Element Formulation; 2.1 Introduction; 2.2 The Partition of Unity Finite Element Method; 2.3 The Enrichment of Approximation Space; 2.3.1 Intrinsic Enrichment; 2.3.2 Extrinsic Enrichment; 2.4 The Basis of X-FEM Approximation; 2.4.1 The Signed Distance Function; 2.4.2 The Heaviside Function; 2.5 Blending Elements
2.6 Governing Equation of a Body with Discontinuity 2.6.1 The Divergence Theorem for Discontinuous Problems; 2.6.2 The Weak form of Governing Equation; 2.7 The X-FEM Discretization of Governing Equation; 2.7.1 Numerical Implementation of X-FEM Formulation; 2.7.2 Numerical Integration Algorithm; 2.8 Application of X-FEM in Weak and Strong Discontinuities; 2.8.1 Modeling an Elastic Bar with a Strong Discontinuity; 2.8.2 Modeling an Elastic Bar with a Weak Discontinuity; 2.8.3 Modeling an Elastic Plate with a Crack Interface at its Center
2.8.4 Modeling an Elastic Plate with a Material Interface at its Center 2.9 Higher Order X-FEM; 2.10 Implementation of X-FEM with Higher Order Elements; 2.10.1 Higher Order X-FEM Modeling of a Plate with a Material Interface; 2.10.2 Higher Order X-FEM Modeling of a Plate with a Curved Crack Interface; Chapter 3 Enrichment Elements; 3.1 Introduction; 3.2 Tracking Moving Boundaries; 3.3 Level Set Method; 3.3.1 Numerical Implementation of LSM; 3.3.2 Coupling the LSM with X-FEM; 3.4 Fast Marching Method; 3.4.1 Coupling the FMM with X-FEM; 3.5 X-FEM Enrichment Functions
3.5.1 Bimaterials, Voids, and Inclusions 3.5.2 Strong Discontinuities and Crack Interfaces; 3.5.3 Brittle Cracks; 3.5.4 Cohesive Cracks; 3.5.5 Plastic Fracture Mechanics; 3.5.6 Multiple Cracks; 3.5.7 Fracture in Bimaterial Problems; 3.5.8 Polycrystalline Microstructure; 3.5.9 Dislocations; 3.5.10 Shear Band Localization; Chapter 4 Blending Elements; 4.1 Introduction; 4.2 Convergence Analysis in the X-FEM; 4.3 Ill-Conditioning in theX-FEM Method; 4.3.1 One-Dimensional Problem with Material Interface; 4.4 Blending Strategies in X-FEM; 4.5 Enhanced Strain Method
4.5.1 An Enhanced Strain Blending Element for the Ramp Enrichment Function
Record Nr. UNINA-9910141916603321
Khoei Amir R.  
Chichester, England : , : Wiley, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui

Data di pubblicazione

Altro...