top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Sofia
Sofia
Pubbl/distr/stampa [Vitória], : EDUFES, Editora da Universidade Federal do Espírito Santo, 2012-
Descrizione fisica Online-Ressource
Disciplina 050
100
Soggetto genere / forma Zeitschrift
ISSN 2317-2339
Classificazione PHILOS
LATAM
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione por
Record Nr. UNINA-9910320759703321
[Vitória], : EDUFES, Editora da Universidade Federal do Espírito Santo, 2012-
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sofia
Sofia
Pubbl/distr/stampa [Vitória], : EDUFES, Editora da Universidade Federal do Espírito Santo, 2012-
Descrizione fisica Online-Ressource
Disciplina 050
100
Soggetto genere / forma Zeitschrift
ISSN 2317-2339
Classificazione PHILOS
LATAM
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione por
Record Nr. UNISA-996321514103316
[Vitória], : EDUFES, Editora da Universidade Federal do Espírito Santo, 2012-
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Sofrosyne : ett blad för svenska fruntimmer
Sofrosyne : ett blad för svenska fruntimmer
Descrizione fisica Online-Ressource
Disciplina 050
Soggetto genere / forma Zeitschrift
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione swe
Altri titoli varianti Sofrosyne
Record Nr. UNISA-996208128403316
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Spacecraft that Explored the Inner Planets Venus and Mercury [[electronic resource] /] / by Thomas Lund
Spacecraft that Explored the Inner Planets Venus and Mercury [[electronic resource] /] / by Thomas Lund
Autore Lund Thomas <1974->
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (366 pages)
Disciplina 050
Collana Astronautical Engineering
Soggetto topico Physics
Astronomy
Outer space—Exploration
Astronautics
Planetary science
Vehicles
Aerospace engineering
Physics and Astronomy
Space Exploration and Astronautics
Planetary Science
Vehicle Engineering
Aerospace Technology and Astronautics
ISBN 3-031-29838-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter1. The Planets of the Sun -- Chapter2. Launch Vehicles for Planetary Spacecraft -- Chapter3. Soviet Union Spacecraft that Explored Venus 1960–1961 -- Chapter4. U.S. Spacecraft that Explored Venus 1960–1980 -- Chapter5. Soviet Union Spacecraft that Explored Venus 1980–1990 -- Chapter6. U.S. Magellan Spacecraft that Explored Venus 1980–2020 -- Chapter7. U.S. Spacecraft that Explored Mercury: Mariner 10 and Messenger -- Chapter8. Japanese and European Space Agency Spacecraft that Explored Venus 2005–2020 Index.
Record Nr. UNINA-9910734844603321
Lund Thomas <1974->  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Speech and computer : 24th International Conference, SPECOM 2022, Gurugram, India, November 14-16, 2022, proceedings / / edited by S. R. Mahadeva Prasanna, [and three others]
Speech and computer : 24th International Conference, SPECOM 2022, Gurugram, India, November 14-16, 2022, proceedings / / edited by S. R. Mahadeva Prasanna, [and three others]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (737 pages)
Disciplina 050
Collana Lecture Notes in Computer Science
Soggetto topico Automatic speech recognition
ISBN 3-031-20980-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996500064003316
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Speech and computer : 24th International Conference, SPECOM 2022, Gurugram, India, November 14-16, 2022, proceedings / / edited by S. R. Mahadeva Prasanna, [and three others]
Speech and computer : 24th International Conference, SPECOM 2022, Gurugram, India, November 14-16, 2022, proceedings / / edited by S. R. Mahadeva Prasanna, [and three others]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (737 pages)
Disciplina 050
Collana Lecture Notes in Computer Science
Soggetto topico Automatic speech recognition
ISBN 3-031-20980-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910624307903321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Spiritualità e utopia: la rivista Coenobium (1906-1919) : Lugano, 10 novembre - Milano, 11 novembre 2005 / a cura di Fabrizio Panzera e Daniela Saresella
Spiritualità e utopia: la rivista Coenobium (1906-1919) : Lugano, 10 novembre - Milano, 11 novembre 2005 / a cura di Fabrizio Panzera e Daniela Saresella
Pubbl/distr/stampa Milano : Cisalpino, 2007
Descrizione fisica 373 p. ; 24 cm
Disciplina 050
Collana Quaderni di Acme
Soggetto topico Coenobium - Atti di congressi
ISBN 978-88-323-6071-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ita
Record Nr. UNISA-990001143210203316
Milano : Cisalpino, 2007
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Springer handbook of augmented reality / / edited by Andrew Yeh Ching Nee, Soh Khim Ong
Springer handbook of augmented reality / / edited by Andrew Yeh Ching Nee, Soh Khim Ong
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2023]
Descrizione fisica 1 online resource (919 pages)
Disciplina 050
Collana Springer Handbooks
Soggetto topico Augmented reality
ISBN 3-030-67822-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Foreword -- Foreword -- Preface -- Contents -- About the Editors -- Contributors -- Part I Historical Developments -- 1 Fundamentals of All the Realities: Virtual, Augmented, Mediated, Multimediated, and Beyond -- 1.1 What Is (Augmented) Reality? -- 1.2 Historical Background and Context -- 1.2.1 A Confusing Mess of Different Realities: Virtual, Augmented, Mixed, and X-Reality -- 1.2.2 Mediated Reality (XY-Reality) -- 1.2.3 Deliberately Mediated Reality -- 1.2.4 Unintentionally Mediated Reality -- 1.2.5 The Mediated Reality (X,Y) Continuum -- 1.3 Multimediated Reality -- 1.3.1 Technologies for Sensory Attenuation -- 1.3.2 Multimedia in Photographic Darkrooms -- 1.3.3 Multimediated Reality Darkroom -- 1.3.4 Comparison with Existing Measuring Instruments -- 1.4 Multimediated Reality Is Multiscale, Multimodal, Multisensory, Multiveillant, and Multidimensional -- 1.4.1 Multisensory Synthetic Synesthesia -- 1.4.2 Multidimensional Multimediated Reality -- 1.5 Multimediated Reality Continuum -- 1.5.1 Multimediated Reality is ``*R'' (All R) -- 1.6 Other Forms of Phenomenological Augmented Reality -- 1.6.1 History of the SWIM -- 1.6.2 SWIM Principle of Operation -- 1.6.3 Visualizing Radio Waves with SWIM and Software-Defined Radio -- 1.6.4 Electric Machines and SWIM -- 1.7 Summary and Conclusions -- References -- 2 History of Augmented Reality -- 2.1 AR Basics: Operational Definition and Enabling Technologies -- 2.2 AR Enabling Technologies -- 2.2.1 Positional Tracking for AR -- 2.2.2 Co-registration and Rendering of Visual Contents -- 2.2.3 Visualization -- 2.3 The Past of AR -- 2.4 Current AR Technologies and Applications -- 2.4.1 Main Application Fields -- 2.5 Emerging Trends and Open Challenges for AR -- 2.6 Conclusions -- References -- Part II Principles and Fundamentals, Software Techniques, and Developments.
3 Principles of Object Tracking and Mapping -- 3.1 Pose Estimation and Tracking Fundamentals -- 3.1.1 Notation: Problem Formulation -- Coordinate System Transformations -- 6DoF Pose of Rigid Bodies -- 3.1.2 Cameras -- Perspective Camera Model -- Intrinsic Parameters -- Image Distortion -- Extrinsic Parameters -- From World to Pixel Coordinates -- Camera Calibration -- Spherical Camera Model -- Rolling Shutter Effects -- 3.1.3 Inertial Sensors -- Gyroscopes -- Accelerometers -- Inertial Navigation -- 3.1.4 Depth Sensors -- 3.1.5 Geospatial Navigation Sensors -- 3.2 Computer Vision Techniques -- 3.2.1 Feature Matching -- 3.2.2 Feature Tracking -- Optical Flow Estimation -- 3.2.3 Pose Estimation from Feature Correspondences -- The DLT Algorithm -- Homography Pose Estimation -- Nonlinear Optimization -- Random Sample Consensus -- 3.2.4 The Epipolar Constraint -- 3.2.5 Line Tracking -- 3.2.6 Direct Image Alignment -- 3.2.7 Structure from Motion -- Triangulation -- Bundle Adjustment -- 3.2.8 Depth Image Tracking/ICP -- 3.2.9 Deep Learning in Computer Vision -- Convolutional Neural Networks -- Network Training -- Deep Learning in Tracking and Mapping -- 3.3 Model-Based Tracking -- 3.3.1 Marker Trackers -- 3.3.2 3D Model Trackers -- Object Model Acquisition -- Feature Trackers -- Edge Trackers -- Direct Trackers -- Deep Learning-Based Trackers -- Hybrid Trackers -- Tracking by Detection/Pose Initialization -- 3.3.3 Nonrigid and Articulated Objects -- 3.4 SLAM -- 3.4.1 Visual SLAM -- SLAM Architecture/Main Components -- Keypoint-Based SLAM -- Direct SLAM -- 3.4.2 Visual-Inertial SLAM -- 3.4.3 RGB-D SLAM -- 3.4.4 Deep Learning for SLAM -- Towards Semantic SLAM -- 3.5 Conclusion -- References -- 4 3D Object and Hand Pose Estimation -- 4.1 3D Object and Hand Pose Estimation for Augmented Reality -- 4.2 Formalization.
4.3 Challenges of 3D Pose Estimation Using Computer Vision -- 4.4 Early Approaches to 3D Pose Estimation and Their Limits -- 4.5 Machine Learning and Deep Learning -- 4.6 Datasets -- 4.6.1 Datasets for Object Pose Estimation -- 4.6.2 Datasets for Hand Pose Estimation -- 4.6.3 Datasets for Object and Hand Pose Estimation -- 4.6.4 Metrics -- 4.7 Modern Approaches to 3D Object Pose Estimation -- 4.7.1 BB8 -- 4.7.2 SSD-6D -- 4.7.3 YOLO-6D -- 4.7.4 PoseCNN -- 4.7.5 DeepIM -- 4.7.6 Augmented Autoencoders -- 4.7.7 Robustness to Partial Occlusions: Oberweger's Method, Segmentation-Driven MeThod, PVNet -- 4.7.8 DPOD and Pix2Pose -- 4.7.9 Discussion -- 4.8 3D Pose Estimation for Object Categories -- 4.9 3D Hand Pose Estimation from Depth Maps -- 4.9.1 DeepPrior++ -- 4.9.2 V2V-PoseNet -- 4.9.3 A2J -- 4.9.4 Discussion -- 4.10 3D Hand Pose Estimation from an RGB Image -- 4.10.1 Zimmerman's Method -- 4.10.2 Iqbal's Method -- 4.10.3 GANerated Hands -- 4.10.4 3D Hand Shape and Pose Estimation: Ge's and Boukhayma's Methods -- 4.10.5 Implementation in MediaPipe -- 4.10.6 Manipulating Virtual Objects -- 4.11 3D Object+Hand Pose Estimation -- 4.11.1 ObMan and HOPS-Net -- 4.11.2 H+O -- 4.11.3 HOnnotate -- 4.12 The Future of 3D Object and Hand Pose Estimation -- References -- 5 Mixed Reality Interaction Techniques -- 5.1 Introduction -- 5.2 Tangible and Surface-Based Interaction -- 5.3 Gesture-Based Interaction -- 5.4 Pen-Based Interaction -- 5.5 Gaze-Based Interaction -- 5.6 Haptic Interaction -- 5.7 Multimodal Interaction -- 5.8 Multi-Display Interaction -- 5.9 Interaction Using Keyboard and Mouse -- 5.10 Virtual Agents -- 5.11 Summary and Outlook -- References -- 6 Interaction with AI-Controlled Characters in AR Worlds -- 6.1 Populating AR Worlds with Virtual Creatures -- 6.1.1 AI Characters in AR Literature -- 6.2 Designing AI Characters for AI Worlds.
6.2.1 Categorization of AI Characters -- Trainer, Trainee, and Coaches -- Subject of an Examination -- Assistants and Companions -- Enemies and Opponent -- 6.2.2 Architecture Base Components -- 6.2.3 Appearance -- Human-Human Communication -- Human-AI Communication -- Conclusions for AR Characters -- 6.2.4 Movement -- 6.2.5 Reasoning -- Decision Trees -- Finite State Machines -- Goal-Oriented Behavior -- Utility AI -- 6.3 Conclusion -- References -- 7 Privacy and Security Issues and Solutions for Mixed Reality Applications -- 7.1 The Mixed Reality Present -- 7.1.1 Overview on Mixed Reality Processing -- 7.1.2 Towards MR Mobility -- 7.2 Security and Privacy Risks with Mixed Reality -- 7.2.1 Risks with MR Data Processing -- 7.2.2 Mobility and Privacy -- 7.3 Protection Approaches for Mixed Reality -- 7.3.1 Input Protection -- 7.3.2 Output Protection -- 7.3.3 Protecting User Interactions -- 7.3.4 Device Protection -- 7.3.5 Open Research Challenges -- 7.3.6 Future Directions -- 7.4 Towards Everyday MR Services -- References -- Part III Hardware and Peripherals -- 8 The Optics of Augmented Reality Displays -- 8.1 Introduction to Augmented and Virtual Reality -- 8.2 A Brief History of AR Displays -- 8.3 The Basics of Visual Instrument Design -- 8.3.1 The Human Visual System -- 8.3.2 Optical Design Properties for AR Displays -- 8.4 Optical Components of an AR Display -- 8.4.1 Microdisplays as the Light Engine -- 8.4.2 Radiometric Brightness Analysis for AR Displays to Guide Microdisplay Specifications -- 8.4.3 A Brief Foray into Laser Scanning -- 8.4.4 Imaging Optics and Combiners -- 8.5 Optical Architectures and How They Work -- 8.6 Areas for Improvement -- 8.7 Components and Techniques for AR Displays of the Future -- 8.7.1 Pupil-Steering and Eye-Tracking -- 8.7.2 Freeform Optics -- 8.7.3 Metasurfaces -- 8.8 Conclusion -- References.
9 Tracking Systems for Augmented Reality -- 9.1 Introduction -- 9.2 Multisensor Integration -- 9.3 Calibration Methods -- 9.3.1 Notations -- 9.3.2 Tip Tool Calibration -- 9.3.3 Tracking the Same Target -- 9.3.4 Hand-Eye Calibration -- 9.3.5 Absolute Orientation -- 9.4 Registration Methods -- 9.4.1 Iterative Closest Point -- 9.4.2 Point-Feature-Based Alignment -- 9.5 Inertial Measurement Unit Calibration -- 9.5.1 IMU Bias -- 9.5.2 Sensor Fusion -- 9.5.3 IMU-Camera Calibration -- 9.6 Projector-Camera Calibration -- 9.6.1 Pixel Mapping -- 9.6.2 Spatial Calibration -- 9.7 Optical See-Through Head-Mounted Display Calibration -- 9.7.1 Interaction-Based Methods -- 9.7.2 Interaction-Free Calibration -- 9.7.3 Eye Tracking -- 9.8 Evaluation Methods -- 9.8.1 Objective Measurements -- 9.8.2 Subjective Measurements -- 9.9 Tracking Systems for Sensor Integration -- 9.9.1 Mechanical Links -- 9.9.2 Electromagnetic Sensors -- 9.9.3 Inertial Measurement Units -- 9.9.4 Flex Sensors -- 9.9.5 Radio Signals -- 9.9.6 Camera-Based Motion Capture Systems -- Passive Markers -- Active Markers -- 9.9.7 Markerless Tracking -- Human Pose Tracking -- Facial Tracking -- Hand Tracking -- Thermal Tracking -- 9.9.8 Projection-Based Sensing -- Spatial Division Code -- Spatial Scanning -- 9.10 Applications -- 9.10.1 Medical Applications -- 9.10.2 Robotic Applications -- 9.10.3 Entertainment Applications -- 9.11 Conclusion -- References -- 10 Embodied Interaction on Constrained Interfaces for Augmented Reality -- 10.1 Resurgence of Wearable Computers -- 10.1.1 Interaction with Today's Wearable AR Headsets -- 10.1.2 Drawing a Parallel to Desktops and Smartphones -- 10.1.3 The Constrained Interfaces on Wearable ARHeadsets -- 10.1.4 Rethinking on the Constrained AR Interfaces -- 10.1.5 Spotlights of the Chapter -- 10.1.6 Structure -- 10.2 Related Work.
10.2.1 Freehand Pointing on Constrained Hardware.
Record Nr. UNISA-996547972103316
Cham, Switzerland : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Springer handbook of augmented reality / / edited by Andrew Yeh Ching Nee, Soh Khim Ong
Springer handbook of augmented reality / / edited by Andrew Yeh Ching Nee, Soh Khim Ong
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2023]
Descrizione fisica 1 online resource (919 pages)
Disciplina 050
Collana Springer Handbooks
Soggetto topico Augmented reality
ISBN 3-030-67822-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Foreword -- Foreword -- Preface -- Contents -- About the Editors -- Contributors -- Part I Historical Developments -- 1 Fundamentals of All the Realities: Virtual, Augmented, Mediated, Multimediated, and Beyond -- 1.1 What Is (Augmented) Reality? -- 1.2 Historical Background and Context -- 1.2.1 A Confusing Mess of Different Realities: Virtual, Augmented, Mixed, and X-Reality -- 1.2.2 Mediated Reality (XY-Reality) -- 1.2.3 Deliberately Mediated Reality -- 1.2.4 Unintentionally Mediated Reality -- 1.2.5 The Mediated Reality (X,Y) Continuum -- 1.3 Multimediated Reality -- 1.3.1 Technologies for Sensory Attenuation -- 1.3.2 Multimedia in Photographic Darkrooms -- 1.3.3 Multimediated Reality Darkroom -- 1.3.4 Comparison with Existing Measuring Instruments -- 1.4 Multimediated Reality Is Multiscale, Multimodal, Multisensory, Multiveillant, and Multidimensional -- 1.4.1 Multisensory Synthetic Synesthesia -- 1.4.2 Multidimensional Multimediated Reality -- 1.5 Multimediated Reality Continuum -- 1.5.1 Multimediated Reality is ``*R'' (All R) -- 1.6 Other Forms of Phenomenological Augmented Reality -- 1.6.1 History of the SWIM -- 1.6.2 SWIM Principle of Operation -- 1.6.3 Visualizing Radio Waves with SWIM and Software-Defined Radio -- 1.6.4 Electric Machines and SWIM -- 1.7 Summary and Conclusions -- References -- 2 History of Augmented Reality -- 2.1 AR Basics: Operational Definition and Enabling Technologies -- 2.2 AR Enabling Technologies -- 2.2.1 Positional Tracking for AR -- 2.2.2 Co-registration and Rendering of Visual Contents -- 2.2.3 Visualization -- 2.3 The Past of AR -- 2.4 Current AR Technologies and Applications -- 2.4.1 Main Application Fields -- 2.5 Emerging Trends and Open Challenges for AR -- 2.6 Conclusions -- References -- Part II Principles and Fundamentals, Software Techniques, and Developments.
3 Principles of Object Tracking and Mapping -- 3.1 Pose Estimation and Tracking Fundamentals -- 3.1.1 Notation: Problem Formulation -- Coordinate System Transformations -- 6DoF Pose of Rigid Bodies -- 3.1.2 Cameras -- Perspective Camera Model -- Intrinsic Parameters -- Image Distortion -- Extrinsic Parameters -- From World to Pixel Coordinates -- Camera Calibration -- Spherical Camera Model -- Rolling Shutter Effects -- 3.1.3 Inertial Sensors -- Gyroscopes -- Accelerometers -- Inertial Navigation -- 3.1.4 Depth Sensors -- 3.1.5 Geospatial Navigation Sensors -- 3.2 Computer Vision Techniques -- 3.2.1 Feature Matching -- 3.2.2 Feature Tracking -- Optical Flow Estimation -- 3.2.3 Pose Estimation from Feature Correspondences -- The DLT Algorithm -- Homography Pose Estimation -- Nonlinear Optimization -- Random Sample Consensus -- 3.2.4 The Epipolar Constraint -- 3.2.5 Line Tracking -- 3.2.6 Direct Image Alignment -- 3.2.7 Structure from Motion -- Triangulation -- Bundle Adjustment -- 3.2.8 Depth Image Tracking/ICP -- 3.2.9 Deep Learning in Computer Vision -- Convolutional Neural Networks -- Network Training -- Deep Learning in Tracking and Mapping -- 3.3 Model-Based Tracking -- 3.3.1 Marker Trackers -- 3.3.2 3D Model Trackers -- Object Model Acquisition -- Feature Trackers -- Edge Trackers -- Direct Trackers -- Deep Learning-Based Trackers -- Hybrid Trackers -- Tracking by Detection/Pose Initialization -- 3.3.3 Nonrigid and Articulated Objects -- 3.4 SLAM -- 3.4.1 Visual SLAM -- SLAM Architecture/Main Components -- Keypoint-Based SLAM -- Direct SLAM -- 3.4.2 Visual-Inertial SLAM -- 3.4.3 RGB-D SLAM -- 3.4.4 Deep Learning for SLAM -- Towards Semantic SLAM -- 3.5 Conclusion -- References -- 4 3D Object and Hand Pose Estimation -- 4.1 3D Object and Hand Pose Estimation for Augmented Reality -- 4.2 Formalization.
4.3 Challenges of 3D Pose Estimation Using Computer Vision -- 4.4 Early Approaches to 3D Pose Estimation and Their Limits -- 4.5 Machine Learning and Deep Learning -- 4.6 Datasets -- 4.6.1 Datasets for Object Pose Estimation -- 4.6.2 Datasets for Hand Pose Estimation -- 4.6.3 Datasets for Object and Hand Pose Estimation -- 4.6.4 Metrics -- 4.7 Modern Approaches to 3D Object Pose Estimation -- 4.7.1 BB8 -- 4.7.2 SSD-6D -- 4.7.3 YOLO-6D -- 4.7.4 PoseCNN -- 4.7.5 DeepIM -- 4.7.6 Augmented Autoencoders -- 4.7.7 Robustness to Partial Occlusions: Oberweger's Method, Segmentation-Driven MeThod, PVNet -- 4.7.8 DPOD and Pix2Pose -- 4.7.9 Discussion -- 4.8 3D Pose Estimation for Object Categories -- 4.9 3D Hand Pose Estimation from Depth Maps -- 4.9.1 DeepPrior++ -- 4.9.2 V2V-PoseNet -- 4.9.3 A2J -- 4.9.4 Discussion -- 4.10 3D Hand Pose Estimation from an RGB Image -- 4.10.1 Zimmerman's Method -- 4.10.2 Iqbal's Method -- 4.10.3 GANerated Hands -- 4.10.4 3D Hand Shape and Pose Estimation: Ge's and Boukhayma's Methods -- 4.10.5 Implementation in MediaPipe -- 4.10.6 Manipulating Virtual Objects -- 4.11 3D Object+Hand Pose Estimation -- 4.11.1 ObMan and HOPS-Net -- 4.11.2 H+O -- 4.11.3 HOnnotate -- 4.12 The Future of 3D Object and Hand Pose Estimation -- References -- 5 Mixed Reality Interaction Techniques -- 5.1 Introduction -- 5.2 Tangible and Surface-Based Interaction -- 5.3 Gesture-Based Interaction -- 5.4 Pen-Based Interaction -- 5.5 Gaze-Based Interaction -- 5.6 Haptic Interaction -- 5.7 Multimodal Interaction -- 5.8 Multi-Display Interaction -- 5.9 Interaction Using Keyboard and Mouse -- 5.10 Virtual Agents -- 5.11 Summary and Outlook -- References -- 6 Interaction with AI-Controlled Characters in AR Worlds -- 6.1 Populating AR Worlds with Virtual Creatures -- 6.1.1 AI Characters in AR Literature -- 6.2 Designing AI Characters for AI Worlds.
6.2.1 Categorization of AI Characters -- Trainer, Trainee, and Coaches -- Subject of an Examination -- Assistants and Companions -- Enemies and Opponent -- 6.2.2 Architecture Base Components -- 6.2.3 Appearance -- Human-Human Communication -- Human-AI Communication -- Conclusions for AR Characters -- 6.2.4 Movement -- 6.2.5 Reasoning -- Decision Trees -- Finite State Machines -- Goal-Oriented Behavior -- Utility AI -- 6.3 Conclusion -- References -- 7 Privacy and Security Issues and Solutions for Mixed Reality Applications -- 7.1 The Mixed Reality Present -- 7.1.1 Overview on Mixed Reality Processing -- 7.1.2 Towards MR Mobility -- 7.2 Security and Privacy Risks with Mixed Reality -- 7.2.1 Risks with MR Data Processing -- 7.2.2 Mobility and Privacy -- 7.3 Protection Approaches for Mixed Reality -- 7.3.1 Input Protection -- 7.3.2 Output Protection -- 7.3.3 Protecting User Interactions -- 7.3.4 Device Protection -- 7.3.5 Open Research Challenges -- 7.3.6 Future Directions -- 7.4 Towards Everyday MR Services -- References -- Part III Hardware and Peripherals -- 8 The Optics of Augmented Reality Displays -- 8.1 Introduction to Augmented and Virtual Reality -- 8.2 A Brief History of AR Displays -- 8.3 The Basics of Visual Instrument Design -- 8.3.1 The Human Visual System -- 8.3.2 Optical Design Properties for AR Displays -- 8.4 Optical Components of an AR Display -- 8.4.1 Microdisplays as the Light Engine -- 8.4.2 Radiometric Brightness Analysis for AR Displays to Guide Microdisplay Specifications -- 8.4.3 A Brief Foray into Laser Scanning -- 8.4.4 Imaging Optics and Combiners -- 8.5 Optical Architectures and How They Work -- 8.6 Areas for Improvement -- 8.7 Components and Techniques for AR Displays of the Future -- 8.7.1 Pupil-Steering and Eye-Tracking -- 8.7.2 Freeform Optics -- 8.7.3 Metasurfaces -- 8.8 Conclusion -- References.
9 Tracking Systems for Augmented Reality -- 9.1 Introduction -- 9.2 Multisensor Integration -- 9.3 Calibration Methods -- 9.3.1 Notations -- 9.3.2 Tip Tool Calibration -- 9.3.3 Tracking the Same Target -- 9.3.4 Hand-Eye Calibration -- 9.3.5 Absolute Orientation -- 9.4 Registration Methods -- 9.4.1 Iterative Closest Point -- 9.4.2 Point-Feature-Based Alignment -- 9.5 Inertial Measurement Unit Calibration -- 9.5.1 IMU Bias -- 9.5.2 Sensor Fusion -- 9.5.3 IMU-Camera Calibration -- 9.6 Projector-Camera Calibration -- 9.6.1 Pixel Mapping -- 9.6.2 Spatial Calibration -- 9.7 Optical See-Through Head-Mounted Display Calibration -- 9.7.1 Interaction-Based Methods -- 9.7.2 Interaction-Free Calibration -- 9.7.3 Eye Tracking -- 9.8 Evaluation Methods -- 9.8.1 Objective Measurements -- 9.8.2 Subjective Measurements -- 9.9 Tracking Systems for Sensor Integration -- 9.9.1 Mechanical Links -- 9.9.2 Electromagnetic Sensors -- 9.9.3 Inertial Measurement Units -- 9.9.4 Flex Sensors -- 9.9.5 Radio Signals -- 9.9.6 Camera-Based Motion Capture Systems -- Passive Markers -- Active Markers -- 9.9.7 Markerless Tracking -- Human Pose Tracking -- Facial Tracking -- Hand Tracking -- Thermal Tracking -- 9.9.8 Projection-Based Sensing -- Spatial Division Code -- Spatial Scanning -- 9.10 Applications -- 9.10.1 Medical Applications -- 9.10.2 Robotic Applications -- 9.10.3 Entertainment Applications -- 9.11 Conclusion -- References -- 10 Embodied Interaction on Constrained Interfaces for Augmented Reality -- 10.1 Resurgence of Wearable Computers -- 10.1.1 Interaction with Today's Wearable AR Headsets -- 10.1.2 Drawing a Parallel to Desktops and Smartphones -- 10.1.3 The Constrained Interfaces on Wearable ARHeadsets -- 10.1.4 Rethinking on the Constrained AR Interfaces -- 10.1.5 Spotlights of the Chapter -- 10.1.6 Structure -- 10.2 Related Work.
10.2.1 Freehand Pointing on Constrained Hardware.
Record Nr. UNINA-9910637717403321
Cham, Switzerland : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
La stampa cattolica a Napoli dal 1860 al 1904 / Antonio Cestaro
La stampa cattolica a Napoli dal 1860 al 1904 / Antonio Cestaro
Autore Cestaro, Antonio
Pubbl/distr/stampa Roma : Edizioni di storia e letteratura, 1965
Descrizione fisica 216 p. ; 25 cm.
Disciplina 050
945.7
Collana Politica e storia ; 13
Soggetto topico Giornalismo - Napoli
Periodici cattolici - Napoli
ISBN 8887114595
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ||
Record Nr. UNISALENTO-991001801289707536
Cestaro, Antonio  
Roma : Edizioni di storia e letteratura, 1965
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui

Data di pubblicazione

Altro...