Advances in case-based reasoning : 6th European conference, ECCBR 2002, Aberdeen, Scotland, UK, September 4-7, 2002, proceedings / / edited by Susan Craw, Alun Preece |
Edizione | [1st ed. 2002.] |
Pubbl/distr/stampa | Berlin, Germany ; ; New York, New York : , : Springer, , [2002] |
Descrizione fisica | 1 online resource (XII, 656 p.) |
Disciplina | 006.33 |
Collana | Lecture Notes in Artificial Intelligence |
Soggetto topico |
Expert systems (Computer science)
Case-based reasoning |
ISBN | 3-540-46119-1 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Invited Papers -- Integrating Background Knowledge into Nearest-Neighbor Text Classification -- Applying Knowledge Management: Techniques for Building Organisational Memories -- Research Papers -- On the Complexity of Plan Adaptation by Derivational Analogy in a Universal Classical Planning Framework -- Inductive Learning for Case-Based Diagnosis with Multiple Faults -- Diverse Product Recommendations Using an Expressive Language for Case Retrieval -- Digital Image Similarity for Geo-spatial Knowledge Management -- Poetry Generation in COLIBRI -- Adaptation Using Iterated Estimations -- The Use of a Uniform Declarative Model in 3D Visualisation for Case-Based Reasoning -- Experiments on Case-Based Retrieval of Software Designs -- Exploiting Taxonomic and Causal Relations in Conversational Case Retrieval -- Bayesian Case Reconstruction -- Relations between Customer Requirements, Performance Measures, and General Case Properties for Case Base Maintenance -- Representing Temporal Knowledge for Case-Based Prediction -- Local Predictions for Case-Based Plan Recognition -- Automatically Selecting Strategies for Multi-Case-Base Reasoning -- Diversity-Conscious Retrieval -- Improving Case Representation and Case Base Maintenance in Recommender Agents -- Similarity Assessment for Generalizied Cases by Optimization Methods -- Case Acquisition in a Project Planning Environment -- Improving Case-Based Recommendation -- Efficient Similarity Determination and Case Construction Techniques for Case-Based Reasoning -- Constructive Adaptation -- A Fuzzy Case Retrieval Approach Based on SQL for Implementing Electronic Catalogs -- Integrating Hybrid Rule-Based with Case-Based Reasoning -- Search and Adaptation in a Fuzzy Object Oriented Case Base -- Deleting and Building Sort Out Techniques for Case Base Maintenance -- Entropy-Based vs. Similarity-Influenced: Attribute Selection Methods for Dialogs Tested on Different Electronic Commerce Domains -- Category-Based Filtering and User Stereotype Cases to Reduce the Latency Problem in Recommender Systems -- Defining Similarity Measures: Top-Down vs. Bottom-Up -- Learning to Adapt for Case-Based Design -- An Approach to Aggregating Ensembles of Lazy Learners That Supports Explanation -- An Experimental Study of Increasing Diversity for Case-Based Diagnosis -- Application Papers -- Collaborative Case-Based Recommender Systems -- Tuning Production Processes through a Case Based Reasoning Approach -- An Application of Case-Based Reasoning to the Adaptive Management of Wireless Networks -- A Case-Based Personal Travel Assistant for Elaborating User Requirements and Assessing Offers -- An Automated Hybrid CBR System for Forecasting -- Using CBR for Automation of Software Design Patterns -- A New Approach to Solution Adaptation and Its Application for Design Purposes -- InfoFrax: CBR in Fused Cast Refractory Manufacture -- Comparison-Based Recommendation -- Case-Based Reasoning for Estuarine Model Design -- Similarity Guided Learning of the Case Description and Improvement of the System Performance in an Image Classification System -- ITR: A Case-Based Travel Advisory System -- Supporting Electronic Design Reuse by Integrating Quality-Criteria into CBR-Based IP Selection -- Building a Case-Based Decision Support System for Land Development Control Using Land Use Function Pattern. |
Record Nr. | UNINA-9910768452203321 |
Berlin, Germany ; ; New York, New York : , : Springer, , [2002] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in Computational Collective Intelligence : 12th International Conference, ICCCI 2020, Da Nang, Vietnam, November 30 - December 3, 2020, Proceedings / / Marcin Hernes, Krystian Wojtkiewicz, Edward Szczerbicki (edsitors) |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (XXIX, 823 p. 348 illus., 240 illus. in color.) |
Disciplina | 006.33 |
Collana | Communications in computer and information science |
Soggetto topico |
Expert systems (Computer science)
Artificial intelligence Intelligent agents (Computer software) Semantic Web Human-computer interaction |
ISBN | 3-030-63119-2 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Data Mining and Machine Learning -- Deep Learning and Applications for Industry 4.0 -- Recommender Systems -- Computer Vision Techniques -- Decision Support and Control Systems -- Intelligent Management Information Systems -- Innovations in Intelligent Systems -- Intelligent Modeling and Simulation Approaches for Games and Real World Systems -- Experience Enhanced Intelligence to IoT -- Data Driven IoT for Smart Society -- Applications of Collective Intelligence -- Natural Language Processing -- Low Resource Languages Processing -- Computational Collective Intelligence and Natural Language Processing. |
Record Nr. | UNISA-996465342303316 |
Cham, Switzerland : , : Springer, , [2021] | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Advances in computational collective intelligence : 13th international, conference, ICCCI 2021, Kallithea, Rhodes, Greece, September 29-October 1, 2021, proceedings / / edited by Krystian Wojtkiewicz [and three others] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (742 pages) |
Disciplina | 006.33 |
Collana | Communications in Computer and Information Science |
Soggetto topico |
Expert systems (Computer science)
Intelligent agents (Computer software) |
ISBN | 3-030-88113-X |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996464513903316 |
Cham, Switzerland : , : Springer, , [2021] | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Advances in Computational Collective Intelligence : 13th International Conference, ICCCI 2021, Kallithea, Rhodes, Greece, September 29 – October 1, 2021, Proceedings / / edited by Krystian Wojtkiewicz, Jan Treur, Elias Pimenidis, Marcin Maleszka |
Edizione | [1st ed. 2021.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021 |
Descrizione fisica | 1 online resource (742 pages) |
Disciplina | 006.33 |
Collana | Communications in Computer and Information Science |
Soggetto topico |
Artificial intelligence
Computer engineering Computer networks Application software Image processing - Digital techniques Computer vision Software engineering Artificial Intelligence Computer Engineering and Networks Computer and Information Systems Applications Computer Imaging, Vision, Pattern Recognition and Graphics Software Engineering |
ISBN | 3-030-88113-X |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Social Networks and Recommender Systems -- Collective Decision-Making -- Computer Vision Techniques -- Innovations in Intelligent Systems -- Cybersecurity Intelligent Methods -- Data Mining and Machine Learning -- Machine Learning in Real-World Data -- Internet of Things and Computational Technologies for Collective Intelligence -- Smart Industry and Management Systems -- Low Resource Languages Processing -- Computational Intelligence for Multimedia Understanding. |
Record Nr. | UNINA-9910502981303321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in Computational Collective Intelligence : 12th International Conference, ICCCI 2020, Da Nang, Vietnam, November 30 – December 3, 2020, Proceedings / / edited by Marcin Hernes, Krystian Wojtkiewicz, Edward Szczerbicki |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (XXIX, 823 p. 348 illus., 240 illus. in color.) |
Disciplina | 006.33 |
Collana | Communications in Computer and Information Science |
Soggetto topico |
Artificial intelligence
Image processing - Digital techniques Computer vision Application software Computer engineering Computer networks Data mining Artificial Intelligence Computer Imaging, Vision, Pattern Recognition and Graphics Computer and Information Systems Applications Computer Engineering and Networks Data Mining and Knowledge Discovery |
ISBN |
9783030631192
3030631192 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Data Mining and Machine Learning -- Deep Learning and Applications for Industry 4.0 -- Recommender Systems -- Computer Vision Techniques -- Decision Support and Control Systems -- Intelligent Management Information Systems -- Innovations in Intelligent Systems -- Intelligent Modeling and Simulation Approaches for Games and Real World Systems -- Experience Enhanced Intelligence to IoT -- Data Driven IoT for Smart Society -- Applications of Collective Intelligence -- Natural Language Processing -- Low Resource Languages Processing -- Computational Collective Intelligence and Natural Language Processing. |
Record Nr. | UNINA-9910427697403321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in Data-Driven Computing and Intelligent Systems : Selected Papers from ADCIS 2022, Volume 1 / / edited by Swagatam Das, Snehanshu Saha, Carlos A. Coello Coello, Jagdish Chand Bansal |
Autore | Das Swagatam |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (885 pages) |
Disciplina | 006.33 |
Altri autori (Persone) |
SahaSnehanshu
Coello CoelloCarlos A BansalJagdish Chand |
Collana | Lecture Notes in Networks and Systems |
Soggetto topico |
Telecommunication
Electronic circuits Cloud computing Artificial intelligence Signal processing Communications Engineering, Networks Electronic Circuits and Systems Cloud Computing Artificial Intelligence Signal, Speech and Image Processing |
ISBN |
9789819932504
9819932505 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- Editors and Contibutors -- Adaptive Volterra Noise Cancellation Using Equilibrium Optimizer Algorithm -- 1 Introduction -- 2 Problem Formulation -- 3 Proposed Equilibrium Optimizer Algorithm-Based Adaptive Volterra Noise Cancellation -- 3.1 Gbest -- 3.2 Exploration Stage (F) -- 3.3 Exploitation Stage (Rate of Generation G) -- 4 Simulation Outcomes -- 4.1 Qualitative Performance Analysis -- 4.2 Quantitative Performance Analysis -- 5 Conclusion and Scope -- References -- SHLPM: Sentiment Analysis on Code-Mixed Data Using Summation of Hidden Layers of Pre-trained Model -- 1 Introduction -- 2 Literature Review -- 3 Proposed Methodology -- 3.1 BERT -- 3.2 RoBERTa -- 3.3 SHLPM -- 4 Implementation Details -- 4.1 Dataset and Pre-processing -- 4.2 SHLPM-BERT -- 4.3 SHLPM-XLM-RoBERTa -- 5 Results and Discussion -- 6 Conclusion -- References -- Comprehensive Analysis of Online Social Network Frauds -- 1 Introduction -- 1.1 Statistics of Online Social Network Frauds -- 2 Interrelationship between OSN Frauds, Social Network Threats, and Cybercrime -- 3 Types of Frauds in OSN -- 3.1 Social Engineering Frauds (SEF) -- 3.2 Human-Targeted Frauds (Child/Adults) -- 3.3 False Identity -- 3.4 Misinformation -- 3.5 E-commerce Fraud (Consumer Frauds) -- 3.6 Case Study for Facebook Security Fraud -- 4 OSN Frauds Detection Using Machine Learning -- 4.1 Pros and Cons -- 5 Conclusion -- References -- Electric Vehicle Control Scheme for V2G and G2V Mode of Operation Using PI/Fuzzy-Based Controller -- 1 Introduction -- 2 Motivation -- 3 System Description -- 4 Mathematical Model Equipments Used -- 4.1 Bidirectional AC-DC Converter -- 4.2 Bidirectional Buck-Boost Converter -- 4.3 Battery Modeling -- 4.4 Control of 1-∅-Based Bidirectional AC-DC Converter Strategy -- 5 Fuzzy Logic Controller -- 6 Control Strategy -- 6.1 Constant Voltage Strategy.
6.2 Constant Current Strategy -- 7 Results and Discussion -- 7.1 PI Controller -- 7.2 Fuzzy Logic Controller -- 7.3 Comparison of Harmonic Profile -- 8 Conclusion -- References -- Experimental Analysis of Skip Connections for SAR Image Denoising -- 1 Introduction -- 2 Related Works -- 2.1 Residual Network -- 2.2 Existing ResNet-Based Denoising Works -- 3 Implementation of the Different Patterns of Skip Connections -- 3.1 Datasets and Pre-processing -- 3.2 Loss Function -- 4 Results and Discussions -- 4.1 Denoising Results on Synthetic Images -- 4.2 Denoising Results on Real SAR Images -- 5 Conclusion -- References -- A Proficient and Economical Approach for IoT-Based Smart Doorbell System -- 1 Introduction -- 2 Literature Review -- 3 System Design and Implementation -- 3.1 System Design -- 3.2 Implementation -- 4 Results and Discussion -- 4.1 Performance Results -- 4.2 Comparison with an Existing System -- 4.3 Cost Analysis -- 5 Limitations -- 6 Conclusion -- References -- Predicting Word Importance Using a Support Vector Regression Model for Multi-document Text Summarization -- 1 Introduction -- 2 Related Work -- 3 Description of Dataset -- 4 Proposed Methodology -- 4.1 Preprocessing -- 4.2 Word Importance Prediction Using Support Vector Regression Model -- 4.3 Sentence Scoring -- 4.4 Summary Generation -- 5 Evaluation, Experiment, and Results -- 5.1 Evaluation -- 5.2 Experiment -- 5.3 Results -- 6 Conclusion and Future Works -- References -- A Comprehensive Survey on Deep Learning-Based Pulmonary Nodule Identification on CT Images -- 1 Introduction -- 2 Datasets and Experimental Setup -- 2.1 LIDC/IDRI Dataset -- 2.2 LUNA16 Dataset -- 2.3 NLST Dataset -- 2.4 KAGGLE DATA SCIENCE BOWL (KDSB) Dataset -- 2.5 VIA/I-ELCAP -- 2.6 NELSON -- 2.7 Others -- 3 CAD System Structure -- 3.1 Data Acquisition -- 3.2 Preprocessing -- 3.3 Lung Segmentation. 3.4 Candidate Nodule Detection -- 3.5 False Positive Reduction -- 3.6 Nodule Categorization -- 4 CNN -- 4.1 Overview -- 4.2 CNN Architectures for Medical Imaging -- 4.3 Unique Characteristics of CNNs -- 4.4 CNN Software and Hardware Equipment -- 4.5 CNNs versus Conventional Models -- 5 Discussion -- 5.1 Research Trends -- 5.2 Challenges and Future Directions -- 6 Conclusion -- References -- Comparative Study on Various CNNs for Classification and Identification of Biotic Stress of Paddy Leaf -- 1 Introduction -- 2 Materials and Methods -- 2.1 Dataset -- 2.2 Proposed Methods -- 3 Experimental Results -- 3.1 Hardware Setup -- 3.2 Time Analysis with respect to GPU and CPU -- 3.3 Performance Analysis for Keras and PyTorch -- 3.4 Performance Analysis of CNN Models -- 3.5 Comparison of the Proposed CNN with Other State-of-the-Art Works -- 4 Conclusion -- References -- Studies on Machine Learning Techniques for Multivariate Forecasting of Delhi Air Quality Index -- 1 Introduction -- 2 Materials and Methodology -- 2.1 Delhi AQI Multivariate Data -- 2.2 Methodology -- 3 Experimental Setup and Simulation Results -- 4 Contrast Analysis Considering Dimensionality Reduction -- 5 Conclusions -- References -- Fine-Grained Voice Discrimination for Low-Resource Datasets Using Scalogram Images -- 1 Introduction -- 2 Related Works -- 3 Proposed Methodology -- 3.1 Collection of Voice Dataset -- 3.2 Preprocessing of Available Dataset to Increase the Trainable Samples -- 3.3 Classification of Phonemes Using Deep Convolutional Neural Network (DCNN)-Based Image Classifiers -- 4 Implementation Result and Analysis -- 5 Conclusion and Future Work -- References -- Sign Language Recognition for Indian Sign Language -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Dataset -- 3.2 Data Preprocessing -- 3.3 Data Splitting -- 3.4 Data Augmentation -- 3.5 Model Compilation. 3.6 Model Training and Testing -- 4 Results -- 5 Novelty and Future Work -- 6 Conclusion -- References -- Buffering Performance of Optical Packet Switch Consisting of Hybrid Buffer -- 1 Introduction -- 2 Literature Survey -- 3 Description of the Optical Packet Switch -- 4 Simulation Results -- 4.1 Bernoulli Process -- 4.2 Results -- 5 Conclusions -- References -- Load Balancing using Probability Distribution in Software Defined Network -- 1 Introduction -- 2 Related Work -- 3 Grouping of Controllers in SDN -- 4 Load Balancing in SDN -- 4.1 Simulation and Evaluation Result -- 5 Conclusion -- References -- COVID Prediction Using Different Modality of Medical Imaging -- 1 Introduction -- 2 Principles of Support Vector Machine (SVM) -- 2.1 Linear Case -- 2.2 Nonlinear Case -- 3 Material and Methods -- 3.1 CT Image Dataset -- 3.2 X-Ray Image Dataset -- 3.3 Ultrasound Image Dataset -- 4 The Proposed Model -- 5 Experimental Result -- 6 Conclusion -- References -- Optimizing Super-Resolution Generative Adversarial Networks -- 1 Introduction -- 2 Related Work -- 3 Dataset -- 3.1 Training Dataset -- 3.2 Test Dataset -- 4 Proposed Methodology -- 5 Performance Metrics -- 5.1 Peak Signal-to-Noise Ratio (PSNR) -- 5.2 Structural Similarity Index (SSIM) -- 6 Results and Discussion -- 7 Conclusion -- References -- Prediction of Hydrodynamic Coefficients of Stratified Porous Structure Using Artificial Neural Network (ANN) -- 1 Introduction -- 2 Stratified Porous Structure -- 3 Experimental Setup -- 4 Artificial Neural Network -- 4.1 Dataset Used for ANN -- 4.2 ANN Model -- 5 Results and Discussions -- 6 Conclusions -- References -- Performance Analysis of Machine Learning Algorithms for Landslide Prediction -- 1 Introduction -- 2 Literature Survey -- 3 Methodology of the Performance Analysis Work -- 3.1 Data Acquisition Layer -- 3.2 Fog Layer -- 3.3 Cloud Layer. 4 Performance Analysis and Results -- 5 Conclusion -- References -- Brain Hemorrhage Classification Using Leaky ReLU-Based Transfer Learning Approach -- 1 Introduction -- 2 Related Works -- 3 Materials and Method -- 3.1 Dataset -- 3.2 Transfer Learning -- 3.3 ResNet50 -- 4 Proposed Methodology -- 4.1 Input Dataset -- 4.2 Pre-processing -- 4.3 Network Training -- 4.4 Transfer Learning-Based Feature Extraction -- 5 Results -- 6 Conclusion -- References -- Factors Affecting Learning the First Programming Language of University Students -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 Data Collection -- 3.2 Experimental Design -- 3.3 Data Analysis -- 4 Result -- 4.1 Findings -- 5 Decision and Conclusion -- References -- Nature-Inspired Hybrid Virtual Machine Placement Approach in Cloud -- 1 Introduction -- 2 Related Work -- 3 Problem Formulation -- 4 Proposed Framework -- 4.1 Intelligent Water Drops (IWD) Algorithm -- 4.2 Water Cycle Algorithm (WCA) -- 4.3 Intelligent Water Drop Cycle Algorithm (IWDCA) -- 5 Result -- 5.1 Experiment Setup -- 5.2 Simulation Analysis of IWDCA -- 6 Conclusion -- References -- Segmented ε-Greedy for Solving a Redesigned Multi-arm Bandit Environment -- 1 Introduction -- 2 Previous Works -- 3 Methodology -- 4 Results -- 5 Conclusion and Future Work -- References -- Data-Based Time Series Modelling of Industrial Grinding Circuits -- 1 Introduction -- 2 Formulation -- 2.1 Grinding Circuit -- 2.2 Least Square Support Vector Regression -- 2.3 Proposed Algorithm -- 3 Results and Discussions -- 3.1 Results of Proposed Algorithm -- 3.2 LS-SVR Model Performance -- 3.3 Comparison with Arbitrarily Selected Model -- 4 Conclusions -- References -- Computational Models for Prognosis of Medication for Cardiovascular Diseases -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 4 Results -- 5 Conclusion -- References. Develop a Marathi Lemmatizer for Common Nouns and Simple Tenses of Verbs. |
Record Nr. | UNINA-9910736981503321 |
Das Swagatam
![]() |
||
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in Data-Driven Computing and Intelligent Systems : Selected Papers from ADCIS 2023, Volume 4 / / edited by Swagatam Das, Snehanshu Saha, Carlos A. Coello Coello, Hemant Rathore, Jagdish Chand Bansal |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (517 pages) |
Disciplina | 006.33 |
Collana | Lecture Notes in Networks and Systems |
Soggetto topico |
Telecommunication
Electronic circuits Cloud computing Artificial intelligence Signal processing Communications Engineering, Networks Electronic Circuits and Systems Cloud Computing Artificial Intelligence Signal, Speech and Image Processing |
ISBN | 981-9995-31-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910847582703321 |
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in intelligent data analysis VII : 7th International Symposium on Intelligent Data Analysis, IDA 2007, Ljubljana, Slovenia, September 6-8, 2007, proceedings / / Michael R. Berthold, John Shawe-Taylor, Nada Lavrač (editors) |
Edizione | [1st ed. 2007.] |
Pubbl/distr/stampa | Berlin ; ; Heidelberg : , : Springer, , [2007] |
Descrizione fisica | 1 online resource (XIV, 382 p.) |
Disciplina | 006.33 |
Collana | Lecture notes in computer science |
Soggetto topico |
Mathematical statistics
Mathematical statistics - Data processing Expert systems (Computer science) |
ISBN | 3-540-74825-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Statistical Data Analysis -- Compact and Understandable Descriptions of Mixtures of Bernoulli Distributions -- Multiplicative Updates for L 1–Regularized Linear and Logistic Regression -- Learning to Align: A Statistical Approach -- Transductive Reliability Estimation for Kernel Based Classifiers -- Bayesian Approaches -- Parameter Learning for Bayesian Networks with Strict Qualitative Influences -- Tree Augmented Naive Bayes for Regression Using Mixtures of Truncated Exponentials: Application to Higher Education Management -- Clustering Methods -- DENCLUE 2.0: Fast Clustering Based on Kernel Density Estimation -- Visualising the Cluster Structure of Data Streams -- Relational Topographic Maps -- Ensemble Learning -- Incremental Learning with Multiple Classifier Systems Using Correction Filters for Classification -- Combining Bagging and Random Subspaces to Create Better Ensembles -- Two Bagging Algorithms with Coupled Learners to Encourage Diversity -- Ranking -- Relational Algebra for Ranked Tables with Similarities: Properties and Implementation -- A New Way to Aggregate Preferences: Application to Eurovision Song Contests -- Trees -- Conditional Classification Trees Using Instrumental Variables -- Robust Tree-Based Incremental Imputation Method for Data Fusion -- Sequence/ Time Series Analysis -- Making Time: Pseudo Time-Series for the Temporal Analysis of Cross Section Data -- Recurrent Predictive Models for Sequence Segmentation -- Sequence Classification Using Statistical Pattern Recognition -- Knowledge Discovery -- Subrule Analysis and the Frequency-Confidence Diagram -- A Partial Correlation-Based Algorithm for Causal Structure Discovery with Continuous Variables -- Visualization -- Visualizing Sets of Partial Rankings -- A Partially Supervised Metric Multidimensional Scaling Algorithm for Textual Data Visualization -- Landscape Multidimensional Scaling -- Text Mining -- A Support Vector Machine Approach to Dutch Part-of-Speech Tagging -- Towards Adaptive Web Mining: Histograms and Contexts in Text Data Clustering -- Does SVM Really Scale Up to Large Bag of Words Feature Spaces? -- Bioinformatics -- Noise Filtering and Microarray Image Reconstruction Via Chained Fouriers -- Motif Discovery Using Multi-Objective Genetic Algorithm in Biosequences -- Soft Topographic Map for Clustering and Classification of Bacteria -- Applications -- Fuzzy Logic Based Gait Classification for Hemiplegic Patients -- Traffic Sign Recognition Using Discriminative Local Features -- Novelty Detection in Patient Histories: Experiments with Measures Based on Text Compression. |
Altri titoli varianti |
Advances in intelligent data analysis 7
Advances in intelligent data analysis seven |
Record Nr. | UNINA-9910484403103321 |
Berlin ; ; Heidelberg : , : Springer, , [2007] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in intelligent data analysis VII : 7th International Symposium on Intelligent Data Analysis, IDA 2007, Ljubljana, Slovenia, September 6-8, 2007, proceedings / / Michael R. Berthold, John Shawe-Taylor, Nada Lavrač (editors) |
Edizione | [1st ed. 2007.] |
Pubbl/distr/stampa | Berlin ; ; Heidelberg : , : Springer, , [2007] |
Descrizione fisica | 1 online resource (XIV, 382 p.) |
Disciplina | 006.33 |
Collana | Lecture notes in computer science |
Soggetto topico |
Mathematical statistics
Mathematical statistics - Data processing Expert systems (Computer science) |
ISBN | 3-540-74825-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Statistical Data Analysis -- Compact and Understandable Descriptions of Mixtures of Bernoulli Distributions -- Multiplicative Updates for L 1–Regularized Linear and Logistic Regression -- Learning to Align: A Statistical Approach -- Transductive Reliability Estimation for Kernel Based Classifiers -- Bayesian Approaches -- Parameter Learning for Bayesian Networks with Strict Qualitative Influences -- Tree Augmented Naive Bayes for Regression Using Mixtures of Truncated Exponentials: Application to Higher Education Management -- Clustering Methods -- DENCLUE 2.0: Fast Clustering Based on Kernel Density Estimation -- Visualising the Cluster Structure of Data Streams -- Relational Topographic Maps -- Ensemble Learning -- Incremental Learning with Multiple Classifier Systems Using Correction Filters for Classification -- Combining Bagging and Random Subspaces to Create Better Ensembles -- Two Bagging Algorithms with Coupled Learners to Encourage Diversity -- Ranking -- Relational Algebra for Ranked Tables with Similarities: Properties and Implementation -- A New Way to Aggregate Preferences: Application to Eurovision Song Contests -- Trees -- Conditional Classification Trees Using Instrumental Variables -- Robust Tree-Based Incremental Imputation Method for Data Fusion -- Sequence/ Time Series Analysis -- Making Time: Pseudo Time-Series for the Temporal Analysis of Cross Section Data -- Recurrent Predictive Models for Sequence Segmentation -- Sequence Classification Using Statistical Pattern Recognition -- Knowledge Discovery -- Subrule Analysis and the Frequency-Confidence Diagram -- A Partial Correlation-Based Algorithm for Causal Structure Discovery with Continuous Variables -- Visualization -- Visualizing Sets of Partial Rankings -- A Partially Supervised Metric Multidimensional Scaling Algorithm for Textual Data Visualization -- Landscape Multidimensional Scaling -- Text Mining -- A Support Vector Machine Approach to Dutch Part-of-Speech Tagging -- Towards Adaptive Web Mining: Histograms and Contexts in Text Data Clustering -- Does SVM Really Scale Up to Large Bag of Words Feature Spaces? -- Bioinformatics -- Noise Filtering and Microarray Image Reconstruction Via Chained Fouriers -- Motif Discovery Using Multi-Objective Genetic Algorithm in Biosequences -- Soft Topographic Map for Clustering and Classification of Bacteria -- Applications -- Fuzzy Logic Based Gait Classification for Hemiplegic Patients -- Traffic Sign Recognition Using Discriminative Local Features -- Novelty Detection in Patient Histories: Experiments with Measures Based on Text Compression. |
Altri titoli varianti |
Advances in intelligent data analysis 7
Advances in intelligent data analysis seven |
Record Nr. | UNISA-996465748403316 |
Berlin ; ; Heidelberg : , : Springer, , [2007] | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Advances in statistical multisource-multitarget information fusion / / Ronald P.S. Mahler |
Autore | Mahler Ronald P. S. |
Pubbl/distr/stampa | Boston : , : Artech House, , ©2014 |
Descrizione fisica | 1 online resource (1167 p.) |
Disciplina | 006.33 |
Collana | Artech House electronic warfare library |
Soggetto topico |
Expert systems (Computer science)
Multisensor data fusion - Mathematics Bayesian statistical decision theory |
Soggetto genere / forma | Electronic books. |
ISBN | 1-60807-799-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; Acknowledgments; Chapter 1 Introduction to the Book; 1.1 OVERVIEW OF FINITE-SET STATISTICS; 1.2 RECENT ADVANCES IN FINITE-SET STATISTICS; 1.3 ORGANIZATION OF THE BOOK; Part I Elements of Finite-Set Statistics; Chapter 2 Random Finite Sets; 2.1 INTRODUCTION; 2.2 SINGLE-SENSOR, SINGLE-TARGET STATISTICS; 2.3 RANDOM FINITE SETS (RFSs); 2.4 MULTIOBJECT STATISTICS IN A NUTSHELL; Chapter 3 Multiobject Calculus; 3.1 INTRODUCTION; 3.2 BASIC CONCEPTS; 3.3 SET INTEGRALS; 3.4 MULTIOBJECT DIFFERENTIAL CALCULUS; 3.5 KEY FORMULAS OF MULTIOBJECT CALCULUS.
Chapter 4 Multiobject Statistics4.1 INTRODUCTION; 4.2 BASIC MULTIOBJECT STATISTICAL DESCRIPTORS; 4.3 IMPORTANT MULTIOBJECT PROCESSES; 4.4 BASIC DERIVED RFSs; Chapter 5 Multiobject Modeling and Filtering; 5.1 INTRODUCTION; 5.2 THE MULTISENSOR-MULTITARGET BAYES FILTER; 5.3 MULTITARGET BAYES OPTIMALITY; 5.4 RFS MULTITARGET MOTION MODELS; 5.5 RFS MULTITARGET MEASUREMENT MODELS; 5.6 MULTITARGET MARKOV DENSITIES; 5.7 MULTISENSOR-MULTITARGET LIKELIHOOD FUNCTIONS; 5.8 THE MULTITARGET BAYES FILTER IN p.g.fl -- FORM; 5.9 THE FACTORED MULTITARGET BAYES FILTER; 5.10 APPROXIMATE MULTITARGET FILTERS. Chapter 6 Multiobject Metrology6.1 INTRODUCTION; 6.2 MULTIOBJECT MISS DISTANCE; 6.3 MULTIOBJECT INFORMATION FUNCTIONALS; Part II RFS Filters: StandardMeasurement Model; Chapter 7 Introduction to Part II; 7.1 SUMMARY OF MAJOR LESSONS LEARNED; 7.2 STANDARD MULTITARGET MEASUREMENT MODEL; 7.3 AN APPROXIMATE STANDARD LIKELIHOOD FUNCTION; 7.4 STANDARD MULTITARGET MOTION MODEL; 7.5 STANDARD MOTION MODEL WITH TARGET SPAWNING; 7.6 ORGANIZATION OF PART II; Chapter 8 Classical PHD and CPHD Filters; 8.1 INTRODUCTION; 8.2 A GENERAL PHD FILTER; 8.3 ARBITRARY-CLUTTER PHD FILTER; 8.4 CLASSICAL PHD FILTER. 8.5 CLASSICAL CARDINALIZED PHD (CPHD) FILTER8.6 ZERO FALSE ALARMS (ZFA) CPHD FILTER; 8.7 PHD FILTER FOR STATE-DEPENDENT POISSON CLUTTER; Chapter 9 Implementing Classical PHD/CPHDFilters; 9.1 INTRODUCTION; 9.2 "SPOOKY ACTION AT A DISTANCE"; 9.3 MERGING AND SPLITTING FOR PHD FILTERS; 9.4 MERGING AND SPLITTING FOR CPHD FILTERS; 9.5 GAUSSIAN MIXTURE (GM) IMPLEMENTATION; 9.6 SEQUENTIAL MONTE CARLO (SMC) IMPLEMENTATION; Chapter 10 Multisensor PHD and CPHD Filters; 10.1 INTRODUCTION; 10.2 THE MULTISENSOR-MULTITARGET BAYES FILTER; 10.3 THE GENERAL MULTISENSOR PHD FILTER. 10.4 THE MULTISENSOR CLASSICAL PHD FILTER10.5 ITERATED-CORRECTOR MULTISENSOR PHD/CPHD FILTERS; 10.6 PARALLEL COMBINATION MULTISENSOR PHD AND CPHD FILTERS; 10.7 AN ERRONEOUS "AVERAGED" MULTISENSOR PHD FILTER; 10.8 PERFORMANCE COMPARISONS; Chapter 11 Jump-Markov PHD/CPHD Filters; 11.1 INTRODUCTION; 11.2 JUMP-MARKOV FILTERS: A REVIEW; 11.3 MULTITARGET JUMP-MARKOV SYSTEMS; 11.4 JUMP-MARKOV PHD FILTER; 11.5 JUMP-MARKOV CPHD FILTER; 11.6 VARIABLE STATE SPACE JUMP-MARKOV CPHD FILTERS; 11.7 IMPLEMENTING JUMP-MARKOV PHD/CPHD FILTERS; 11.8 IMPLEMENTED JUMP-MARKOV PHD/CPHD FILTERS. |
Record Nr. | UNINA-9910460377903321 |
Mahler Ronald P. S.
![]() |
||
Boston : , : Artech House, , ©2014 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|