top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Multi-layer potentials and boundary problems : for higher-order elliptic systems in Lipschitz domains / Irina Mitrea, Marius Mitrea
Multi-layer potentials and boundary problems : for higher-order elliptic systems in Lipschitz domains / Irina Mitrea, Marius Mitrea
Autore Mitrea, Irina
Pubbl/distr/stampa Heidelberg, : Springer, 2013
Descrizione fisica X, 424 p. ; 24 cm
Altri autori (Persone) Mitrea, Marius
Soggetto topico 35C15 - Integral representations of solutions to PDEs [MSC 2020]
35J08 - Green's functions for elliptic equations [MSC 2020]
35G45 - Boundary value problems for systems of linear higher-order PDEs [MSC 2020]
35J48 - Higher-order elliptic systems [MSC 2020]
35J58 - Boundary value problems for higher-order elliptic systems [MSC 2020]
35B30 - Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs [MSC 2020]
31B30 - Biharmonic and polyharmonic equations and functions in higher dimensions [MSC 2020]
31A10 - Integral representations, integral operators, integral equations methods in two dimensions [MSC 2020]
Soggetto non controllato Lipschitz domains
Multiple layers
Partial differential equations
Trace and extensions
Whitney arrays
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0096096
Mitrea, Irina  
Heidelberg, : Springer, 2013
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Multi-layer potentials and boundary problems : for higher-order elliptic systems in Lipschitz domains / Irina Mitrea, Marius Mitrea
Multi-layer potentials and boundary problems : for higher-order elliptic systems in Lipschitz domains / Irina Mitrea, Marius Mitrea
Autore Mitrea, Irina
Pubbl/distr/stampa Heidelberg, : Springer, 2013
Descrizione fisica X, 424 p. ; 24 cm
Altri autori (Persone) Mitrea, Marius
Soggetto topico 31A10 - Integral representations, integral operators, integral equations methods in two dimensions [MSC 2020]
31B30 - Biharmonic and polyharmonic equations and functions in higher dimensions [MSC 2020]
35B30 - Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs [MSC 2020]
35C15 - Integral representations of solutions to PDEs [MSC 2020]
35G45 - Boundary value problems for systems of linear higher-order PDEs [MSC 2020]
35J08 - Green's functions for elliptic equations [MSC 2020]
35J48 - Higher-order elliptic systems [MSC 2020]
35J58 - Boundary value problems for higher-order elliptic systems [MSC 2020]
Soggetto non controllato Lipschitz domains
Multiple layers
Partial Differential Equations
Trace and extensions
Whitney arrays
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00096096
Mitrea, Irina  
Heidelberg, : Springer, 2013
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Multi-layer potentials and boundary problems : for higher-order elliptic systems in Lipschitz domains / Irina Mitrea, Marius Mitrea
Multi-layer potentials and boundary problems : for higher-order elliptic systems in Lipschitz domains / Irina Mitrea, Marius Mitrea
Autore Mitrea, Irina
Edizione [Heidelberg : Springer, 2013]
Descrizione fisica Pubblicazione in formato elettronico
Altri autori (Persone) Mitrea, Marius
Soggetto topico 35C15 - Integral representations of solutions to PDEs [MSC 2020]
35J08 - Green's functions for elliptic equations [MSC 2020]
35G45 - Boundary value problems for systems of linear higher-order PDEs [MSC 2020]
35J48 - Higher-order elliptic systems [MSC 2020]
35J58 - Boundary value problems for higher-order elliptic systems [MSC 2020]
35B30 - Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs [MSC 2020]
31B30 - Biharmonic and polyharmonic equations and functions in higher dimensions [MSC 2020]
31A10 - Integral representations, integral operators, integral equations methods in two dimensions [MSC 2020]
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-SUN0096096
Mitrea, Irina  
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Multi-Layer Potentials and Boundary Problems [e-book] : for Higher-Order Elliptic Systems in Lipschitz Domains / by Irina Mitrea, Marius Mitrea
Multi-Layer Potentials and Boundary Problems [e-book] : for Higher-Order Elliptic Systems in Lipschitz Domains / by Irina Mitrea, Marius Mitrea
Autore Mitrea, Irina
Pubbl/distr/stampa Berlin : Springer, 2013
Descrizione fisica 1 online resource (x, 424 p.)
Disciplina 515.96
Altri autori (Persone) Mitrea, Mariusauthor
Collana Lecture Notes in Mathematics, 0075-8434 ; 2063
Soggetto topico Mathematics
Fourier analysis
Integral equations
Differential equations, partial
Potential theory (Mathematics)
ISBN 9783642326660
Classificazione AMS 35C15
AMS 35G45
AMS 35J48
Formato Risorse elettroniche
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991002501949707536
Mitrea, Irina  
Berlin : Springer, 2013
Risorse elettroniche
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
The Hodge-Laplacian : boundary value problems on Riemannian manifolds / Dorina Mitrea [ed altri]
The Hodge-Laplacian : boundary value problems on Riemannian manifolds / Dorina Mitrea [ed altri]
Autore Mitrea, Dorina
Pubbl/distr/stampa Berlin : De Gruyter, 2016
Descrizione fisica IX, 516 p. : ill. ; 25 cm
Disciplina 516.373
Altri autori (Persone) Mitrea, Irina
Mitrea, Marius
Taylor, Michael
Collana De Gruyter studies in mathematics
Soggetto non controllato Teoria probabilistica del potenziale
Geometria riemanniana
ISBN 978-3-11-048266-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910159357203321
Mitrea, Dorina  
Berlin : De Gruyter, 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui