top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Cloud Computing and Intelligence Systems (CCIS) : 2014 IEEE 3rd International Conference on / / Huadong Ma
Cloud Computing and Intelligence Systems (CCIS) : 2014 IEEE 3rd International Conference on / / Huadong Ma
Autore Ma Huadong
Pubbl/distr/stampa Piscataway, NJ : , : IEEE, , 2014
Descrizione fisica 1 online resource (various pagings) : illustrations
Disciplina 004
Soggetto topico Cloud computing
ISBN 1-4799-4719-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti 2014 IEEE 3rd International Conference on Cloud Computing and Intelligence Systems
Cloud Computing and Intelligence Systems
Record Nr. UNISA-996279715203316
Ma Huadong  
Piscataway, NJ : , : IEEE, , 2014
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Cloud Computing and Intelligence Systems (CCIS) : 2014 IEEE 3rd International Conference on / / Huadong Ma
Cloud Computing and Intelligence Systems (CCIS) : 2014 IEEE 3rd International Conference on / / Huadong Ma
Autore Ma Huadong
Pubbl/distr/stampa Piscataway, NJ : , : IEEE, , 2014
Descrizione fisica 1 online resource (various pagings) : illustrations
Disciplina 004
Soggetto topico Cloud computing
ISBN 1-4799-4719-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti 2014 IEEE 3rd International Conference on Cloud Computing and Intelligence Systems
Cloud Computing and Intelligence Systems
Record Nr. UNINA-9910131483803321
Ma Huadong  
Piscataway, NJ : , : IEEE, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multimedia sensor networks / / Huadong Ma, Liang Liu, Hong Luo
Multimedia sensor networks / / Huadong Ma, Liang Liu, Hong Luo
Autore Ma Huadong
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (xii, 249 pages) : illustrations
Disciplina 681.2
Collana Advances in Computer Science and Technology
Soggetto topico Sensor networks
Multisensor data fusion
ISBN 981-16-0107-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- 1 Introduction to Multimedia Sensor Networks -- 1.1 Basic Concepts -- 1.2 Conceptual Architecture -- 1.2.1 Sensing Layer -- 1.2.2 Transmission Layer -- 1.2.3 Processing Layer -- 1.3 Main Research Topics of Multimedia Sensor Networks -- 2 Directional Sensing Models and Coverage Control -- 2.1 Introduction -- 2.2 Directional Sensor Networks -- 2.2.1 Motivation -- 2.2.2 Coverage Problem with Directional Sensing -- 2.2.2.1 Directional Sensing Model -- 2.2.2.2 Coverage Probability with Directional Sensing Model -- 2.2.3 Coverage Enhancing with Rotatable Directional Sensing Model -- 2.2.3.1 Rotatable Directional Sensing Model -- 2.2.3.2 The Problem of Area Coverage Enhancing -- 2.2.4 Potential Field Based Coverage-Enhancing Method -- 2.2.4.1 Sensing Centroid -- 2.2.4.2 Potential Field Force -- 2.2.4.3 Control Laws -- 2.2.5 Simulation Results -- 2.2.5.1 Case Study -- 2.2.5.2 Performance Evaluation -- 2.3 Three Dimensional Directional Sensor Networks -- 2.3.1 Motivation -- 2.3.2 The 3D Directional Sensing Model -- 2.3.3 Area Coverage-Enhancing Method -- 2.3.3.1 Problem Formulation -- 2.3.3.2 Virtual Force Analysis Based Coverage-Enhancing -- 2.3.3.3 Coverage Optimization Approach -- 2.3.4 Case Study and Performance Evaluations -- 2.4 Directional K-Coverage for Target Recognition -- 2.4.1 Motivation -- 2.4.2 Collaborative Face Orientation Detection -- 2.4.3 Problem Description -- 2.4.3.1 Effective Sensing in Video Surveillance -- 2.4.3.2 Directional K-Coverage (DKC) Problem -- 2.4.4 Analysis of Directional K-Coverage -- 2.4.5 Experimental Results -- 2.5 L-Coverage for Target Localization -- 2.5.1 Motivation -- 2.5.2 Localization-Oriented Sensing Model -- 2.5.3 Bayesian Estimation Based L-Coverage -- 2.5.3.1 L-Coverage Concept -- 2.5.3.2 L-Coverage Illustrations.
2.5.4 L-Coverage Probability in Randomly Deployed Camera Sensor Networks -- 2.5.5 Simulation Experiments -- 2.6 Exposure-Path Prevention for Intrusion Detection in Multimedia Sensor Networks -- 2.6.1 Motivation -- 2.6.2 System Models and Problem Formulation -- 2.6.2.1 Sensors Deploying Model -- 2.6.2.2 Continuum Percolation Model-Based Problem Formulation -- 2.6.3 Bond Percolation Model for Coverage -- 2.6.4 Critical Density for Exposure Path -- 2.6.4.1 Critical Density of Omnidirectional Sensors -- 2.6.4.2 Critical Density of Directional Sensors -- 2.6.5 Dependence Among Neighboring Edges -- 2.6.6 Simulation Evaluations -- 2.6.6.1 Omnidirectional Sensor Networks -- 2.6.6.2 Directional Sensor Networks -- References -- 3 Data Fusion Based Transmission in Multimedia Sensor Networks -- 3.1 Introduction -- 3.2 Adaptive Data Fusion for Energy Efficient Routing in Multimedia Sensor Networks -- 3.2.1 Motivation -- 3.2.2 Measurement of Image Fusion Cost -- 3.2.2.1 Measurement Model for Data Aggregation -- 3.2.2.2 Image Fusion -- 3.2.3 System Model and Problem Formulation -- 3.2.3.1 Network Model -- 3.2.3.2 Problem Formulation -- 3.2.4 Minimum Fusion Steiner Tree -- 3.2.4.1 MFST Algorithm -- 3.2.4.2 3-D Binary Tree Structure -- 3.2.5 Design and Analysis of AFST -- 3.2.5.1 Binary Fusion Steiner Tree (BFST) -- 3.2.5.2 Adaptive Fusion Steiner Tree (AFST) -- 3.2.6 Experimental Study -- 3.2.6.1 Simulation Environment -- 3.2.6.2 Impact of Correlation Coefficient -- 3.2.6.3 Impact of Unit Fusion Cost -- 3.3 Physarum Optimization: A Biology-Inspired Algorithm for the Steiner Tree Problem in Networks -- 3.3.1 Motivation -- 3.3.2 Biology-Inspired Optimization and Physarum Computing -- 3.3.3 Problem Formulation and Physarum Model -- 3.3.3.1 Steiner Tree Problem -- 3.3.3.2 Mathematical Model for Physarum -- 3.3.4 Physarum Optimization for Steiner Tree Problem.
3.3.4.1 Initial Pressures of Vertices -- 3.3.4.2 Main Process of Physarum Optimization -- 3.3.4.3 Convergence of Physarum Optimization -- 3.3.4.4 Algorithms of Physarum Optimization -- 3.4 A Trust-Based Framework for Fault-Tolerant Data Aggregation in Multimedia Sensor Networks -- 3.4.1 Motivation -- 3.4.2 System Model -- 3.4.2.1 Multi-Layer Trustworthy Aggregation Architecture -- 3.4.2.2 Source Model -- 3.4.2.3 Trust Model -- 3.4.3 Trust-Based Framework for Fault-Tolerant Data Aggregation -- 3.4.3.1 Self Data Trust Opinion of Sensor Node -- 3.4.3.2 Peer Node Trust Opinion -- 3.4.3.3 Trust Transfer and Peer Data Trust Opinion -- 3.4.3.4 Trust Combination and Self Data Trust Opinion of Aggregator -- 3.4.3.5 Trust-Based and Fault-Tolerant Data Aggregation Algorithm -- 3.4.4 Experimental and Simulation Studies -- 3.4.4.1 Continuous Audio Stream -- 3.4.4.2 Discrete Data -- References -- 4 In-Network Processing for Multimedia Sensor Networks -- 4.1 Introduction -- 4.2 Correlation Based Image Processing in Multimedia Sensor Networks -- 4.2.1 Motivation -- 4.2.2 Sensing Correlation -- 4.2.3 Image Processing Based on Correlation -- 4.2.3.1 Allocating the Sensing Task -- 4.2.3.2 Image Capturing -- 4.2.3.3 Image Delivering -- 4.2.3.4 Image Fusion -- 4.2.4 Experimetal Results -- 4.3 Dynamic Node Collaboration for Mobile Target Tracking in Multimedia Sensor Networks -- 4.3.1 Motivation -- 4.3.2 Related Works -- 4.3.3 System Models and Description -- 4.3.3.1 Motion Model of the Target -- 4.3.3.2 Sensing Model of Camera Sensors -- 4.3.3.3 Target Tracking by Sequential Monte Carlo Method -- 4.3.3.4 The Dynamic Node Collaboration Scheme -- 4.3.4 Election of the Cluster Heads -- 4.3.5 Selection of the Cluster Members -- 4.3.5.1 Utility Function -- 4.3.5.2 Cost Function -- 4.3.5.3 The Cluster Members Selection Algorithm -- 4.3.6 Simulation Results.
4.4 Distributed Target Classification in Multimedia Sensor Networks -- 4.4.1 Motivation -- 4.4.2 Related Works -- 4.4.3 Procedure of Target Classification in Multimedia Sensor Networks -- 4.4.3.1 Target Detection -- 4.4.3.2 Feature Extraction -- 4.4.3.3 Classification -- 4.4.4 Binary Classification Tree Based Framework -- 4.4.4.1 Generation of the Binary Classification Tree -- 4.4.4.2 Division of the Binary Classification Tree -- 4.4.4.3 Selection of Multimedia Sensor Nodes -- 4.4.5 Case Study and Simulations -- 4.5 Decomposition-Fusion: A Cooperative Computing Mode for Multimedia Sensor Networks -- 4.5.1 Motivation -- 4.5.2 Typical Paradigms of Transmission-Processing for MSNs -- 4.5.3 Decomposition-Fusion Cooperative Computing Framework -- 4.5.3.1 Task Decomposition -- 4.5.3.2 Target Detection -- 4.5.3.3 Selection of Candidates -- 4.5.3.4 Selection of Cooperators -- 4.5.3.5 Interim Results Fusion -- References -- 5 Multimedia Sensor Network Supported IoT Service -- 5.1 Introduction -- 5.2 Searching in IoT -- 5.2.1 Motivation -- 5.2.2 Concept of IoT Search -- 5.2.3 Characters of Searching in IoT -- 5.2.4 Challenges of Searching in IoT -- 5.2.5 The Progressive Search Paradigm -- 5.2.5.1 Coarse-to-Fine Search Strategy -- 5.2.5.2 Near-to-Distant Search Strategy -- 5.2.5.3 Low-to-High Permission Search Strategy -- 5.2.6 Progressive IoT Search in the Multimedia Sensors Based Urban Sensing Network -- 5.3 PROVID: Progressive and Multi-modal Vehicle Re-identification for Large-Scale Urban Surveillance -- 5.3.1 Motivation -- 5.3.2 Related Work -- 5.3.3 Overview of the PROVID Framework -- 5.3.4 Vehicle Filtering by Appearance -- 5.3.4.1 Multi-level Vehicle Representation -- 5.3.4.2 The Null-Space-Based FACT Model -- 5.3.5 License Plate Verification Based on Siamese Neural Network -- 5.3.6 Spatiotemporal Relation-Based Vehicle Re-ranking -- 5.3.7 Applications.
5.3.7.1 Application I: Suspect Vehicle Search -- 5.3.7.2 Application II: Cross-Camera Vehicle Tracking -- 5.3.8 Experiments -- 5.3.8.1 Dataset -- 5.3.8.2 Experimental Settings -- 5.3.8.3 Evaluation of Appearance-Based Vehicle Re-Id -- 5.3.8.4 Evaluation of Plate Verification -- 5.3.8.5 Evaluation of Progressive Vehicle Re-Id -- 5.3.8.6 Time Cost of the PROVID Framework -- References -- 6 Prospect of Future Research -- 6.1 Human-Like Perception -- 6.2 Intelligent Networking and Transmission -- 6.3 Intelligent Services.
Record Nr. UNISA-996464502303316
Ma Huadong  
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Multimedia Sensor Networks / / by Huadong Ma, Liang Liu, Hong Luo
Multimedia Sensor Networks / / by Huadong Ma, Liang Liu, Hong Luo
Autore Ma Huadong
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (xii, 249 pages) : illustrations
Disciplina 681.2
Collana Advances in Computer Science and Technology, In cooperation with the China Computer Federation (CCF)
Soggetto topico Computer networks
Cooperating objects (Computer systems)
Multimedia systems
Computer Communication Networks
Cyber-Physical Systems
Multimedia Information Systems
ISBN 981-16-0107-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Introduction to Multimedia Sensor Networks -- Chapter 2. Directional Sensing Models and Coverage Control -- Chapter 3. Data Fusion based Transmission in Multimedia Sensor Networks -- Chapter 4. In-Network Processing for Multimedia Sensor Networks -- Chapter 5. Multimedia Sensor Network Supported IoT Service -- Chapter 6. Prospect of Future Research. .
Record Nr. UNINA-9910488693803321
Ma Huadong  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui