Fundamental aspects of plasma chemical physics : thermodynamics / Mario Capitelli, Gianpiero Colonna, Antonio D'Angola
| Fundamental aspects of plasma chemical physics : thermodynamics / Mario Capitelli, Gianpiero Colonna, Antonio D'Angola |
| Autore | Capitelli, Mario |
| Pubbl/distr/stampa | New York : Springer, 2012 |
| Descrizione fisica | XVII, 308 p. ; 25 cm |
| Disciplina | 530.44 |
| Altri autori (Persone) |
Colonna, Gianpiero
D'Angola, Antonio |
| Collana | Springer Series on atomic, optical, and plasma physics |
| Soggetto topico |
Plasma (gas ionizzati)
Termodinamica |
| ISBN | 978-1-4419-8181-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNIBAS-000030538 |
Capitelli, Mario
|
||
| New York : Springer, 2012 | ||
| Lo trovi qui: Univ. della Basilicata | ||
| ||
Plasma Modeling (Second Edition) : Methods and Applications
| Plasma Modeling (Second Edition) : Methods and Applications |
| Autore | Colonna Gianpiero |
| Edizione | [2nd ed.] |
| Pubbl/distr/stampa | Bristol : , : Institute of Physics Publishing, , 2022 |
| Descrizione fisica | 1 online resource (725 pages) |
| Altri autori (Persone) |
D'AngolaAntonio
LoffhagenDetlef LapentaGiovanni CoppaGianni SilvaLuis PeanoFabio PeinettiFederico GrassoDaniela BorgognoDario |
| Collana | IOP Series in Plasma Physics Series |
| Soggetto topico |
Kinetic theory of matter
Nuclear fusion |
| ISBN |
9780750345002
0750345004 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Acknowledgements -- Editor biographies -- Gianpiero Colonna -- Antonio D'Angola -- List of contributors -- Chapter 1 Boltzmann and Vlasov equations in plasma physics -- 1.1 Fundamentals -- 1.1.1 The convection operator -- 1.1.2 The collisional operator -- 1.1.3 Boltzmann's H-theorem -- 1.1.4 Vlasov equation -- 1.2 Cross sections -- 1.3 Solution of the Boltzmann equation -- 1.4 Plasma modeling numerical codes -- References -- Chapter 2 Two-term Boltzmann Equation -- 2.1 Two-term distribution -- 2.2 Differential equations -- 2.3 Quasi-stationary approximation -- 2.4 Rapidly varying oscillating field -- 2.4.1 Case B = 0 -- 2.4.2 Generalization to independent frequencies -- 2.4.3 Matrices for single frequency -- 2.4.4 Some considerations -- 2.4.5 Power absorbed by electrons -- 2.4.6 Mean magnetic dipole moment -- 2.4.7 Perpendicular energy equation -- 2.5 Electrons in flow -- 2.6 Electron energy distribution -- 2.6.1 Current anisotropy -- 2.6.2 Transport properties -- 2.6.3 Nozzle flow -- 2.7 The collision integral -- 2.7.1 Elastic collisions with heavy species -- 2.7.2 Electron-electron collisions -- 2.7.3 Inelastic and superelastic collisions -- 2.7.4 Chemical processes -- 2.8 The numerical solution -- 2.9 Appendix: angle integrals -- 2.9.1 Type (a) -- 2.9.2 Type (b) -- References -- Chapter 3 Multiterm and non-local electron Boltzmann equation -- 3.1 Introduction -- 3.2 Basic relations -- 3.2.1 Boltzmann equation of the electrons -- 3.2.2 Expansion of the velocity distribution -- 3.2.3 Macroscopic balances -- 3.3 Numerical treatment -- 3.3.1 Solution method for time-dependent conditions -- 3.3.2 Multiterm solution for space-dependent plasmas -- 3.4 Concluding remarks -- References -- Chapter 4 Particle-based simulation of plasmas -- 4.1 Types of interacting systems -- 4.1.1 Strength of interaction.
4.2 Computer simulation of interacting systems -- 4.3 Particle-in-cell method -- 4.3.1 Mathematical formulation of PIC -- 4.3.2 Selection of the particle shapes -- 4.3.3 Derivation of the equations of motion -- 4.4 Coupling with the field equations: spatial discretization on a grid -- 4.5 Temporal discretization of the particle methods -- 4.5.1 Explicit temporal discretization of the particle equations -- 4.5.2 Explicit PIC cycle -- 4.5.3 Electrostatic explicit methods -- 4.5.4 Stability of the explicit PIC method -- 4.6 Implicit particle methods -- 4.7 Annotated python code -- 4.7.1 Initialization -- 4.7.2 Particle initialization -- 4.7.3 Grid initialization -- 4.7.4 Main cycle -- References -- Chapter 5 The ergodic method: plasma dynamics through a sequence of equilibrium states -- 5.1 Introduction to the ergodic method -- 5.2 Expansion of spherical nanoplasmas -- 5.3 Electron dynamics in a Penning trap for technology applications -- References -- Chapter 6 Fluid models for collisionless magnetic reconnection -- 6.1 Two-fluid model -- 6.1.1 Normalization -- 6.2 Collisionless plasmas -- 6.3 Linear dispersion relation -- 6.3.1 The ρs→0 case -- 6.3.2 The ρs⩾de case -- 6.4 Hamiltonian formulation -- 6.5 Numerical simulations of collisionless reconnection -- 6.5.1 The ρs→0 limit -- 6.6 Shear flow effects on the reconnecting instability -- References -- Chapter 7 Magnetohydrodynamics equations -- 7.1 MHD models -- 7.1.1 Model foundation -- 7.1.2 MHD approximation -- 7.1.3 Non-equilibrium conditions -- 7.1.4 Magnetoquasistatics -- 7.1.5 General model -- 7.1.6 Ideal MHD -- 7.1.7 Low magnetic Reynolds number model -- 7.2 Numerical model -- 7.3 Applications -- References -- Chapter 8 Drift-diffusion models and methods -- 8.1 Drift-diffusion transport equations -- 8.1.1 Drift-diffusion model in the absence of magnetic field. 8.1.2 Boundary conditions at solid surfaces -- 8.2 Stiffness and why it needs to be overcome -- 8.3 Block-implicit schemes -- 8.4 Why the drift-diffusion system is particularly stiff -- 8.5 Overcoming the drift-diffusion stiffness -- 8.5.1 Ohm-based potential equation -- 8.5.2 Modified ion transport equation -- 8.5.3 Ambipolar form of the electron transport equation -- 8.6 Generalized recast of the drift-diffusion system -- References -- Chapter 9 Self-consistent kinetics -- 9.1 The state-to-state approach -- 9.2 Collisional-radiative model -- 9.3 Vibrational kinetics -- 9.4 The self-consistent approach -- 9.5 High enthalpy ionized flows -- 9.6 The self-consistent approach for CO2 plasmas -- 9.6.1 CO2 vibrational levels -- 9.6.2 CO2 state-to-state kinetics -- 9.6.3 Results -- References -- Chapter 10 Hypersonic flows with detailed state-to-state kinetics using a GPU cluster -- 10.1 Physical model -- 10.1.1 Governing equations -- 10.1.2 Transport properties -- 10.1.3 Multi-temperature Park model -- 10.1.4 State-to-state model -- 10.2 Numerical scheme -- 10.2.1 Finite-volume approach -- 10.2.2 Convective fluxes discretization -- 10.2.3 Diffusive fluxes discretization -- 10.2.4 Time integration -- 10.2.5 Evaluation of source terms: splitting approach -- 10.3 GPU clustering -- 10.3.1 CUDA environment -- 10.3.2 Kernel development -- 10.3.3 MPI-CUDA environment -- 10.3.4 Kernel examples -- 10.4 Results -- 10.4.1 High enthalpy flow over a double-wedge -- 10.4.2 Scalability performance -- References -- Chapter 11 Hybrid models -- 11.1 Basic assumptions and governing equations -- 11.2 Numerical implementation -- 11.2.1 Time-advance algorithm -- 11.2.2 Initialization and boundary conditions -- 11.3 Applications -- 11.3.1 Electrostatic case: plasma plume expansion and Langmuir probes -- 11.3.2 Magnetostatic case: E × B field devices. 11.3.3 Electromagnetic case: fusion and space plasmas -- 11.3.4 Spatially hybrid simulation: streamers and laser-plasma interaction -- References -- Chapter 12 On the coupling of vibrational and electronic kinetics with the electron energy distribution functions: past and present -- 12.1 H2 plasma -- 12.2 N2 plasma -- 12.3 O2 plasma -- 12.4 CO plasma -- 12.5 Nozzle flows -- 12.6 Conclusions -- References -- Chapter 13 Atmospheric pressure plasmas operating in high frequency fields -- 13.1 Atmospheric pressure plasmas modelling in high frequency fields -- 13.1.1 Transport properties of electrons in non-magnetized and partially ionized gases -- 13.1.2 Treatment of ions and neutral species -- 13.1.3 Macroscopic equations for the weakly ionized gas flow -- 13.1.4 Electrodynamics -- 13.2 Application-contraction of an argon discharge -- 13.3 Conclusion -- References -- Chapter 14 Direct current microarcs at atmospheric pressure -- 14.1 Introduction -- 14.2 Unified fluid modelling of microarcs -- 14.3 Transport quantities, thermodynamic and transport properties -- 14.4 Plasma chemistry -- 14.5 Boundary conditions -- 14.6 Realization and selected results -- 14.7 Conclusion -- References -- Chapter 15 Multiscale phenomenona in a self-organized plasma jet -- 15.1 Introduction -- 15.2 Setup and discharge behaviour -- 15.3 Model equations -- 15.3.1 Gas dynamics -- 15.3.2 Plasma description -- 15.3.3 Argon plasma chemistry -- 15.3.4 Solution method -- 15.4 Plasma jet models -- 15.4.1 Single filament model -- 15.4.2 Period-averaged plasma jet model -- 15.5 Concluding remarks -- References -- Chapter 16 High-enthalpy radiating flows in aerophysics -- 16.1 Fluid dynamic model -- 16.2 Radiative gas dynamics of re-entry space vehicles -- 16.2.1 Fire-II -- 16.2.2 Stardust -- 16.2.3 RAM-C-II -- 16.2.4 ORION -- 16.2.5 PTV -- 16.2.6 MSL -- 16.3 Conclusions -- References. Chapter 17 Simulating plasma aerodynamics -- 17.1 Background and levels of modeling -- 17.2 Flow control via plasma heating -- 17.3 Flow control via magnetic forces -- 17.4 Flow control via electrical forces -- 17.5 Summary and paths forward -- References -- Chapter 18 Dust-plasma interaction: a review of dust charging theory and simulation -- 18.1 Introduction -- 18.2 Basics of dust-plasma interaction -- 18.2.1 Repelled species (qαϕd& -- #62 -- 0) -- 18.2.2 Attracted species (qαϕd< -- 0) -- 18.2.3 Summary of OML theory -- 18.2.4 Some important considerations -- 18.3 A note on the numerical solution of dust-plasma interaction problems -- 18.4 Dust electron emission -- 18.4.1 The OML approach -- 18.4.2 Transition from negatively- to positively-charged states -- 18.5 Final remarks -- References -- Chapter 19 Magnetic confinement for thermonuclear energy production -- 19.1 Ideal magnetostatic equilibrium -- 19.1.1 First principles and topological properties -- 19.1.2 General representations of the magnetic field -- 19.1.3 Specific curvilinear flux coordinate system -- 19.2 Grad-Shafranov equation -- 19.2.1 Figures of merit of the tokamak equilibria -- 19.2.2 Large aspect ratio limit -- 19.2.3 Plasma confined within a conducting shell -- 19.2.4 Radial and vertical equilibrium -- 19.2.5 Shape of plasma meridian cross-section -- 19.2.6 Shape and boundary conditions -- 19.3 Direct and inverse problems -- 19.3.1 Tokamak equilibrium with flow -- 19.4 Principal technical elements of a tokamak -- 19.5 Plasma formation -- 19.5.1 Poynting theorem -- 19.5.2 Start-up and current ramp-up -- 19.5.3 Toroidal coils -- 19.6 Similarity principles applied to tokamaks -- References -- Chapter 20 Verification and validation in plasma physics -- 20.1 Introduction -- 20.2 The validation and verification methodology -- 20.2.1 Code verification methodology. 20.2.2 Solution verification methodology. |
| Record Nr. | UNINA-9910985669903321 |
Colonna Gianpiero
|
||
| Bristol : , : Institute of Physics Publishing, , 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||