Vai al contenuto principale della pagina

Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track and Demo Track : European Conference, ECML PKDD 2025, Porto, Portugal, September 15–19, 2025, Proceedings, Part X / / edited by Inês Dutra, Mykola Pechenizkiy, Paulo Cortez, Sepideh Pashami, Arian Pasquali, Nuno Moniz, Alípio M. Jorge, Carlos Soares, Pedro H. Abreu, João Gama



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Dutra Inês Visualizza persona
Titolo: Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track and Demo Track : European Conference, ECML PKDD 2025, Porto, Portugal, September 15–19, 2025, Proceedings, Part X / / edited by Inês Dutra, Mykola Pechenizkiy, Paulo Cortez, Sepideh Pashami, Arian Pasquali, Nuno Moniz, Alípio M. Jorge, Carlos Soares, Pedro H. Abreu, João Gama Visualizza cluster
Pubblicazione: Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2026
Edizione: 1st ed. 2026.
Descrizione fisica: 1 online resource (880 pages)
Disciplina: 006.3
Soggetto topico: Artificial intelligence
Computer networks
Computers
Image processing - Digital techniques
Computer vision
Software engineering
Artificial Intelligence
Computer Communication Networks
Computing Milieux
Computer Imaging, Vision, Pattern Recognition and Graphics
Software Engineering
Altri autori: PechenizkiyMykola  
CortezPaulo  
PashamiSepideh  
PasqualiArian  
MonizNuno  
JorgeAlípio M  
SoaresCarlos  
AbreuPedro H  
GamaJoão  
Sommario/riassunto: This multi-volume set, LNAI 16013 to LNAI 16022, constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2025, held in Porto, Portugal, September 15–19, 2025. The 300 full papers presented here, together with 15 demo papers, were carefully reviewed and selected from 1253 submissions. The papers presented in these proceedings are from the following three conference tracks: The Research Track in Volume LNAI 16013-16020 refers about Anomaly & Outlier Detection, Bias & Fairness, Causality, Clustering, Data Challenges, Diffusion Models, Ensemble Learning, Graph Neural Networks, Graphs & Networks, Healthcare & Bioinformatics, Images & Computer Vision, Interpretability & Explainability, Large Language Models, Learning Theory, Multimodal Data, Neuro Symbolic Approaches, Optimization, Privacy & Security, Recommender Systems, Reinforcement Learning, Representation Learning, Resource Efficiency, Robustness & Uncertainty, Sequence Models, Streaming & Spatiotemporal Data, Text & Natural Language Processing, Time Series, and Transfer & Multitask Learning. The Applied Data Science Track in Volume LNAI 16020-16022 refers about Agriculture, Food and Earth Sciences, Education, Engineering and Technology, Finance, Economy, Management or Marketing, Health, Biology, Bioinformatics or Chemistry, Industry (4.0, 5.0, Manufacturing, ...), Smart Cities, Transportation and Utilities (e.g., Energy), Sports, and Web and Social Networks The Demo Track in LNAI 16022 showcased practical applications and prototypes, accepting 15 papers from a total of 30 submissions. These proceedings cover the papers accepted in the research and applied data science tracks.
Titolo autorizzato: Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track and Demo Track  Visualizza cluster
ISBN: 3-032-06129-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996691669503316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Artificial Intelligence, . 2945-9141 ; ; 16022