Vai al contenuto principale della pagina
| Autore: |
Yang Shuo
|
| Titolo: |
Artificial intelligence and robotics . Part II : 7th International Symposium, ISAIR 2022, Shanghai, China, October 21-23, 2022, proceedings / / Shuo Yang and Huimin Lu
|
| Pubblicazione: | Singapore : , : Springer, , [2022] |
| ©2022 | |
| Descrizione fisica: | 1 online resource (390 pages) |
| Disciplina: | 006.3 |
| Soggetto topico: | Artificial intelligence |
| Persona (resp. second.): | LuHuimin (Writer on Computer vision) |
| Nota di contenuto: | Intro -- Preface -- Organization -- Contents - Part II -- Contents - Part I -- Brain Modeling for Surgical Training on the Basis of Unity 3D -- 1 Introduction -- 2 Tissue Deformation Modeling and Kinetic Equations -- 2.1 Biomechanical Properties of Brain Tissue -- 2.2 Mass-Spring Model -- 2.3 Physical Modeling of Brain Tissue -- 2.4 Kinetic Equations -- 3 Experimental Environment and Experimental Results -- 3.1 Soft and Hardware Environment -- 3.2 Experimental Platform -- 3.3 Experimental Simulation -- 4 Conclusion -- References -- Motion Saliency Detection Based on Drosophila Vision-Inspired Model -- 1 Introduction -- 2 Related Work -- 2.1 Drosophila Vision -- 2.2 Saliency Detection -- 2.3 Our Contributions -- 3 Methodology: Drosophila Vision-Inspired Model -- 3.1 Motion Pathway -- 3.2 Color Pathway -- 3.3 Central Brain -- 4 Experiment Results -- 4.1 Evaluation Metrics -- 4.2 Results on FBMS and DAVIS -- 4.3 Performance Discussion -- 5 Conclusions -- References -- Research on Matching Mechanism and Route Planning of Intercity Carpool -- 1 Overview -- 1.1 Introduction -- 1.2 Related Work -- 1.3 Study Content -- 1.4 Thesis Organization -- 2 Problem Definition and Model -- 3 Algorithm Design -- 4 Theorem Proof -- 5 Experiments -- 6 Conclusion -- Annex 1 Source Code (code available for review only) -- References -- Image Undistortion and Stereo Rectification Based on Central Ray-Pixel Models -- 1 Introduction -- 2 Related Work -- 2.1 Corner Detection -- 2.2 Pinhole Models -- 2.3 Ray-Pixel Models -- 2.4 Image Undistortion and Stereo Rectification -- 3 Algorithms and Pipeline -- 3.1 Projection and Unprojection -- 3.2 Bundle Adjustment -- 3.3 Image Undistortion -- 3.4 Stereo Rectification -- 3.5 Calibration Pipeline -- 4 Evaluation -- 4.1 Image Undistortion Results -- 4.2 Stereo Rectification Results -- 4.3 Sector Grid Results. |
| 4.4 3D Reconstruction Results -- 5 Evaluation -- References -- GGM-Net: Gradient Constraint on Multi-category Brain MRI Segmentation -- 1 Introduction -- 2 Methods -- 2.1 Image Acquisition and Preprocessing -- 2.2 Gradient-Guided Multi-category Segmentation Network -- 2.3 Training -- 3 Experiment Result -- 3.1 Evaluation Metric -- 3.2 Analysis and Presentation of Results -- 4 Conclusion -- References -- Linear Split Attention for Pavement Crack Detection -- 1 Introduction -- 2 Related Work -- 2.1 Traditional Methods -- 2.2 Deep Learning Based Methods -- 3 Proposed Method -- 3.1 Model Architecture -- 3.2 Linear Split Attention Module -- 3.3 Multi-scale Feature Fusion Module -- 4 Experimental Result and Analysis -- 4.1 Experimental Setting -- 5 Dataset Introduction -- 6 Evaluation Metrics -- 7 Evaluation on Image Datasets -- 8 Ablation Studies -- 9 Conclusions -- References -- Information Acquisition and Feature Extraction of Motor Imagery EEG -- 1 Introduction -- 2 EEG Signals and Signals Acquisition -- 3 Preprocessing of MI-EEG Signals -- 4 Features Extraction and Analyses -- 4.1 Time Domain Methods -- 4.2 Frequency Domain Methods -- 4.3 Time-Frequency Domain Methods -- 4.4 Spatial Domain Methods -- 4.5 Spatio-Temporal Domain Methods -- 4.6 Spatio-Spectral Domain Methods -- 5 Classification of MI EEG Signals -- 6 Conclusions -- References -- Lightweight 3D Point Cloud Classification Network -- 1 Introduction -- 2 Related Work -- 2.1 Hand Crafted Features -- 2.2 Point Cloud Classification -- 2.3 Deep Learning on Point Cloud -- 3 Lightweight 3D Point Cloud Classification Network -- 3.1 Background -- 3.2 Position Encoding -- 3.3 Framework of the Network -- 4 Experiment -- 4.1 Detail Experimental Setting -- 4.2 Results in ModelNet40 -- 4.3 Results in ScanObjectNN -- 4.4 Ablation Study -- 5 Conclusion -- References. | |
| Unsupervised Domain Adaptive Image Semantic Segmentation Based on Convolutional Fine-Grained Discriminant and Entropy Minimization -- 1 Introduction -- 2 Related Works -- 2.1 Semantic Segmentation -- 2.2 Domain Adaptation -- 2.3 Unsupervised Domain Adaptive Semantic Segmentation -- 3 Method -- 3.1 Semantic Segmentation -- 3.2 Entropy Minimization -- 3.3 Fusion and Adversarial Learning -- 4 Experiments -- 4.1 Datasets -- 4.2 Network Architecture -- 4.3 Implementation Details -- 4.4 Experimental Results -- 5 Conclusion -- References -- Ensemble of Classification and Matching Models with Alpha-Refine for UAV Tracking -- 1 Introduction -- 2 Related Work -- 2.1 Correlation-Filter-Based Methods -- 2.2 Deep-Learning-Based Methods -- 3 Proposed Algorithm -- 3.1 Overview -- 3.2 Discriminator -- 3.3 Redetection Module -- 4 Experiment -- 4.1 Dataset -- 4.2 Implementation Details -- 4.3 Results and Analysis -- 5 Conclusion -- References -- LayoutLM-Critic: Multimodal Language Model for Text Error Correction of Optical Character Recognition -- 1 Introduction -- 2 Approach -- 2.1 Local Optimum Criterion of OCR Text -- 2.2 Implementation of LayoutLM-Critic -- 3 Experiment -- 3.1 LayoutLM-Critic -- 3.2 OEC -- 4 Conclusion -- References -- Blind Image Deblurring Via Fast Local Extreme Intensity Prior -- 1 Introduction -- 2 LEP: Local Extreme Intensity Prior -- 2.1 Building Local Extreme Intensity Collect Model -- 2.2 Fast Local Extreme Intensity Prior -- 3 Proposed Blind Deblurring Model -- 3.1 Estimating Latent Image -- 3.2 Estimating Blur Kernel k -- 4 Experiment -- 4.1 Deblurring Images -- 4.2 Analysis and Discussion -- 5 Conclusions -- References -- STRDD: Scene Text Removal with Diffusion Probabilistic Models -- 1 Introduction -- 2 Related Work -- 2.1 Scene Text Removal -- 3 Background: SDE -- 4 Method -- 4.1 Overview -- 4.2 Training -- 4.3 Inference. | |
| 5 Experiment -- 5.1 Datasets -- 5.2 Evaluation Metrics -- 5.3 Comparison with Other Scene Text Removal Methods -- 6 Conclusion -- References -- Geometry-Aware Network for Table Structure Recognition in Wild -- 1 Introduction -- 2 Related Work -- 2.1 Table Detection -- 2.2 Table Structure Recognition -- 2.3 Transformation Learning Networks -- 3 Proposal Method -- 3.1 Framework -- 3.2 Geometry-Aware Representation -- 3.3 Loss Function -- 4 Experiments -- 4.1 Datasets -- 4.2 Evaluation Metric -- 4.3 Evaluation Result -- 5 Conclusion -- References -- A Differential Evolution Algorithm with Adaptive Population Size Reduction Strategy -- 1 Introduction -- 2 The APRDE Algorithm -- 2.1 Variation Strategy -- 2.2 Parameter Adaptive Adjustment -- 2.3 Population Reduction Strategy -- 3 Numerical Experiment and Analysis -- 3.1 Experiments Setup -- 3.2 Comparison of Solution Accuracy and Stability -- 3.3 Comparison of Convergence Speed -- 4 Conclusion -- References -- A Semi-supervised Road Segmentation Method for Remote Sensing Image Based on SegFormer -- 1 Introduction -- 2 Our Method -- 2.1 Training Strategy -- 2.2 Unsupervised Module Design -- 3 Super Pixel Segmentation -- 3.1 SegFormer Network Structure -- 4 Experiment -- 4.1 Datasets -- 4.2 Experimental Setup -- 4.3 Unsupervised Module Experiment -- 4.4 Comparative Test -- 5 Conclusion -- References -- Cross-Layer Feature Attention Module for Multi-scale Object Detection -- 1 Introduction -- 2 The Proposed Method -- 2.1 Cross-Layer Feature Fusion -- 2.2 Feature Refinement -- 3 Experiments -- 3.1 Datasets and Settings -- 3.2 Comparison with State-of-the-Arts -- 3.3 Ablation Studies -- 4 Conclusion and Future Work -- References -- Interact-Pose Datasets for 2D Human Pose Estimation in Multi-person Interaction Scene -- 1 Introduction -- 2 Related Works -- 2.1 Datasets for 2D Human Pose Estimation. | |
| 2.2 Multi-person Human Pose Estimation -- 3 Method -- 3.1 Interact-Pose Dataset -- 3.2 Multi-dataset Fusion Training -- 3.3 Data Augmentation Scheme -- 4 Experiments -- 4.1 Datasets -- 4.2 Training -- 5 Conclusion -- References -- Multimodal Breast Cancer Diagnosis Based on Multi-level Fusion Network -- 1 Introduction -- 2 Related Work -- 2.1 Disease Diagnosis Based on Manually Extracted Feature -- 2.2 Disease Diagnosis Based on Convolutional Neural Network (CNN) -- 2.3 Disease Diagnosis Based on Electronic Medical Records -- 2.4 Disease Diagnosis Based on Multimodality -- 3 Methods -- 3.1 Image Feature Representation -- 3.2 Text Feature Representation -- 3.3 Multimodal Fusion -- 3.4 Classification Prediction -- 4 Experiments -- 4.1 Dataset -- 4.2 Experimental Setup and Evaluation Metrics -- 4.3 Comparative Experiment -- 4.4 Model Analysis -- 5 Conclusion -- References -- Behavior Control of Cooperative Vehicle Infrastructure System in Container Terminals Based on Q-learning -- 1 Introduction -- 2 Design of Model -- 3 Design of Cooperative Vehicle Infrastructure System -- 4 Test Verification -- 4.1 Simulation Experiment -- 4.2 Outdoor Experiment -- 5 Conclusion -- References -- Backdoor Attack Against Deep Learning-Based Autonomous Driving with Fogging -- 1 Introduction -- 2 Related Work -- 3 Fogging Backdoor Attack -- 3.1 Problem Definition -- 3.2 Mathematical Modeling of Fogging -- 3.3 The Fogging Backdoor Attack Pipeline -- 4 Experiment -- 4.1 Experiment Setup -- 4.2 Effectiveness of Our Fogging Attack -- 5 Conclusion -- References -- A Study on Japanese Text Multi-classification with ALBERT-TextCNN -- 1 Introduction -- 2 Related Work -- 2.1 Solutions for Text Classification -- 2.2 Text Classification for Different Languages -- 3 Methodology -- 3.1 ALBERT-TextCNN Model -- 3.2 Tokenization -- 4 Experiments -- 4.1 Test Environment. | |
| 4.2 Experiment Data. | |
| Titolo autorizzato: | Artificial Intelligence and Robotics ![]() |
| ISBN: | 981-19-7943-X |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 996503565303316 |
| Lo trovi qui: | Univ. di Salerno |
| Opac: | Controlla la disponibilità qui |