Vai al contenuto principale della pagina

Smartphones as mobile minilabs in physics : edited volume featuring more than 70 examples from 10 years the physics teacher-column iPhysicsLabs / / edited by Jochen Kuhn and Patrik Vogt



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Smartphones as mobile minilabs in physics : edited volume featuring more than 70 examples from 10 years the physics teacher-column iPhysicsLabs / / edited by Jochen Kuhn and Patrik Vogt Visualizza cluster
Pubblicazione: Cham, Switzerland : , : Springer, , [2022]
©2022
Descrizione fisica: 1 online resource (392 pages)
Disciplina: 530.02854
Soggetto topico: Physics - Study and teaching
Educational technology
Physics - Data processing
Persona (resp. second.): VogtPatrik
KuhnJochen
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Intro -- Foreword -- Contents -- Part I: Introduction -- 1: Smartphones and Tablet PCs: Excellent Digital Swiss Pocket Knives for Physics Education -- 1.1 Mobile Mini-Labs for Teaching and Learning -- 1.2 Good Reasons for Learning with Mobile Mini-Labs -- 1.3 Summary -- References -- Part II: Kinematics and Dynamics -- 2: Determining Ball Velocities with Smartphones -- 2.1 Theoretical Background and Execution of the Experiment -- 2.2 Experiment Analysis -- References -- 3: An Experiment of Relative Velocity in a Train Using a Smartphone -- 3.1 Methods -- 3.2 Results and Conclusion -- References -- 4: LED Gates for Measuring Kinematic Parameters Using the Ambient Light Sensor of a Smartphone -- 4.1 Theoretical Background and Experimental Setup -- 4.2 Experimental Analysis -- References -- 5: Locating a Smartphone´s Accelerometer -- 5.1 Using a Record Turntable to Determine Accelerometer Location -- 5.2 Random and Systematic Errors -- 5.3 Conclusions -- References -- 6: Analyzing Free Fall with a Smartphone Acceleration Sensor -- 6.1 Mode of Operation of Acceleration Sensors in Smartphones -- 6.2 Study of Free Fall by a Smartphone -- References -- 7: Going Nuts: Measuring Free-Fall Acceleration by Analyzing the Sound of Falling Metal Pieces -- 7.1 Theorem II, Proposition II -- 7.2 The Experiment -- 7.3 Evaluating the Sound File -- References -- 8: The Atwood Machine Revisited Using Smartphones -- 8.1 Theory -- 8.2 The Experiment -- 8.3 Analysis and Conclusion -- References -- 9: Study of a Variable Mass Atwood´s Machine Using a Smartphone -- 9.1 Theory -- 9.2 The Experiment -- Assembling -- Experimental Procedure -- 9.3 Conclusion -- References -- Part III: Momentum and Collision -- 10: Analyzing Collision Processes with the Smartphone Acceleration Sensor -- 10.1 Theoretical Background and Execution of the Experiment -- 10.2 Experiment Analysis.
References -- 11: The Dynamics of the Magnetic Linear Accelerator Examined by Video Motion Analysis -- 11.1 Theoretical Background -- 11.2 Experimental Setup -- 11.3 Experimental Results -- References -- 12: Acoustic Measurements of Bouncing Balls and the Determination of Gravitational Acceleration -- 12.1 Acoustic Data Measurement -- 12.2 Determination of the Acceleration of Gravity -- References -- 13: Studying 3D Collisions with Smartphones -- 13.1 The Projectile Motion -- 13.2 The Conservation of Momentum -- References -- Part IV: Rotation -- 14: Measuring Average Angular Velocity with a Smartphone Magnetic Field Sensor -- 14.1 Theory -- 14.2 Experiment -- 14.3 Results -- 14.4 Conclusions -- References -- 15: Visualizing Acceleration with AccelVisu2 -- 15.1 Theoretical Background -- 15.2 The App AccelVisu2 -- 15.3 Ideas for Experiments -- References -- 16: Analyzing Radial Acceleration with a Smartphone Acceleration Sensor -- 16.1 Radial Acceleration in the Physics Laboratory -- 16.2 Centripetal Acceleration of a Merry-Go-Round -- References -- 17: Detect Earth´s Rotation Using Your Smartphone -- 17.1 Theoretical Background -- 17.2 Description of the Experiment -- 17.3 Results -- 17.4 Conclusion -- References -- 18: Angular Velocity and Centripetal Acceleration Relationship -- 18.1 Experimental Setup -- 18.2 Rotatory Motion -- 18.3 Conclusion -- References -- 19: Determination of the Radius of Curves and Roundabouts with a Smartphone -- 19.1 Determination of a Curve Radius Using the Acceleration Sensors -- 19.2 Determination of the Radius of a Roundabout Using the Acceleration Sensor in Combination with the Gyroscope Sensor -- References -- 20: Understanding Coffee Spills Using a Smartphone -- 20.1 The Physics of the SpillNot -- 20.2 Experimental Results -- 20.3 Final Remarks -- References.
21: Tilting Motion and the Moment of Inertia of the Smartphone -- 21.1 Theoretical Background -- 21.2 The Experiment -- References -- 22: Angular Momentum -- 22.1 Experimental Procedure -- 22.2 Experimental Data -- 22.3 Experiment Meets Theory -- 22.4 Is the Rotational Kinetic Energy Conserved? -- 22.5 Conclusion -- References -- 23: Angular Velocity Direct Measurement and Moment of Inertia Calculation of a Rigid Body Using a Smartphone -- 23.1 Experimental Setup -- 23.2 Measurements -- References -- Part V: Mechanics of Deformable Bodies -- 24: Surface Tension Measurements with a Smartphone -- 24.1 Background -- 24.2 Experiment -- 24.3 Results -- 24.4 Conclusion -- References -- 25: Exploring the Atmosphere Using Smartphones -- 25.1 The International Standard Atmosphere -- 25.2 The Experiment -- 25.3 Results -- 25.4 Conclusion -- References -- 26: On the Inflation of a Rubber Balloon -- 26.1 Theoretical Background -- 26.2 The Experiment -- 26.3 Comments -- References -- 27: Video Analysis on Tablet Computers to Investigate Effects of Air Resistance -- 27.1 Theoretical Background -- 27.2 Experimental Setup -- 27.3 Experimental Results -- Determination of Terminal Velocity -- Determination of the Drag Coefficient -- 27.4 Conclusions -- References -- 28: Determination of the Drag Resistance Coefficients of Different Vehicles -- 28.1 Theoretical Background -- 28.2 Execution of the Experiment -- 28.3 Evaluation of Acceleration Data -- References -- Part VI: Pendulums -- 29: Analyzing Simple Pendulum Phenomena with a Smartphone Acceleration Sensor -- 29.1 Investigation of the Mathematical Pendulum Using a Smartphone -- References -- 30: Measurement of g Using a Magnetic Pendulum and a Smartphone Magnetometer -- 30.1 Theoretical Background -- 30.2 The Experiment -- 30.3 Summary -- References.
31: Determination of Gravity Acceleration with Smartphone Ambient Light Sensor -- 31.1 Theoretical Background -- 31.2 The Proposal -- 31.3 Processing and Analysis of Results -- 31.4 Conclusions -- References -- 32: Analyzing Spring Pendulum Phenomena with a Smartphone Acceleration Sensor -- 32.1 The Spring Pendulum -- 32.2 Coupled Pendulum -- References -- 33: Using the Smartphone as Oscillation Balance -- 33.1 Theoretical Background -- 33.2 The Experiment -- References -- 34: Measuring a Spring Constant with a Smartphone Magnetic Field Sensor -- 34.1 Theoretical Background -- 34.2 Experiment -- 34.3 Results -- 34.4 Conclusions -- References -- 35: Analyzing Elevator Oscillation with the Smartphone Acceleration Sensors -- 35.1 Theoretical Background and Execution of the Experiment -- 35.2 Experiment Analysis -- References -- 36: Coupled Pendulums on a Clothesline -- 36.1 Theoretical Background -- 36.2 Experimental Setup -- 36.3 Discussion -- References -- 37: Superposition of Oscillation on the Metapendulum: Visualization of Energy Conservation with the Smartphone -- 37.1 Theoretical Background -- 37.2 Analysis -- References -- 38: Demonstration of the Parallel Axis Theorem Through a Smartphone -- 38.1 Experiment -- 38.2 Analysis and Discussion -- References -- 39: Rotational Energy in a Physical Pendulum -- 39.1 Experimental Setup -- 39.2 Analysis of the Motion -- 39.3 Final Remarks -- References -- Part VII: Acoustical Logging and the Speed of Sound -- 40: Determining the Speed of Sound with Stereo Headphones -- 40.1 Determining the Speed of Sound with a Sound Card and a PC -- 40.2 Low-Cost Alternative Using Headphones -- References -- 41: Stationary Waves in Tubes and the Speed of Sound -- References -- 42: Tunnel Pressure Waves: A Smartphone Inquiry on Rail Travel -- 42.1 Model -- 42.2 Experiment -- References.
43: Smartphone-Aided Measurements of the Speed of Sound in Different Gaseous Mixtures -- 43.1 Measurement of the Speed of Sound Wave in Different Gases -- 43.2 Experiment Setup -- 43.3 The Measurements -- 43.4 Conclusions -- References -- Part VIII: Resonators -- 44: Measurement of Sound Velocity Made Easy Using Harmonic Resonant Frequencies with Everyday Mobile Technology -- 44.1 Theoretical Background and Execution of the Experiments -- Standing Waves and End Correction in a Tube -- Materials and Methods for Determining the Fundamental Frequency -- 44.2 Experiment Analysis -- Resonant Frequencies and Determining the Speed of Sound with the Tube Open at Both Ends -- Resonant Frequencies and Determining Speed of Sound with Tube Open at One End -- References -- 45: Corkscrewing and Speed of Sound: A Surprisingly Simple Experiment -- 45.1 Determining the Speed of Sound: A Five-Second Smartphone Experiment -- 45.2 The Experiment for Use in Physics Classroom -- References -- 46: A Bottle of Tea as a Universal Helmholtz Resonator -- 46.1 Helmholtz Resonator -- 46.2 A Smartphone-Based Experiment in Acoustics -- 46.3 Results and Analysis -- 46.4 Note About the End Correction -- References -- 47: Measuring the Acoustic Response of Helmholtz Resonators -- 47.1 Execution of the Experiment -- 47.2 Theoretical Background and Experiment Analysis -- References -- Part IX: Other Acoustic Phenomena -- 48: Analyzing Acoustic Phenomena with a Smartphone Microphone -- 48.1 Capture and Analysis of Different Types of Sound Waves -- 48.2 Analysis of a Tone -- 48.3 Analysis of a Sound -- 48.4 Analysis of Noise and Impulse -- 48.5 Further Information -- References -- 49: Analyzing the Acoustic Beat with Mobile Devices -- 49.1 Theoretical Background and Execution of the Experiment -- 49.2 Experiment Analysis -- References.
50: Cracking Knuckles: A Smartphone Inquiry on Bioacoustics.
Titolo autorizzato: Smartphones as mobile minilabs in physics  Visualizza cluster
ISBN: 3-030-94044-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996490350703316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui