Vai al contenuto principale della pagina
| Autore: |
Bernard P (Pierre), <1944->
|
| Titolo: |
Lectures on probability theory and statistics : Ecole d'Ete de probabilites de Saint-Flour XXVII - 1997 / / Pierre Bernard [and three others]
|
| Pubblicazione: | Berlin ; ; Heidelberg : , : Springer-Verlag, , [1999] |
| ©1999 | |
| Edizione: | 1st ed. 1999. |
| Descrizione fisica: | 1 online resource (X, 298 p.) |
| Disciplina: | 530.475 |
| Soggetto topico: | Brownian motion processes |
| Ising model | |
| Lattice theory | |
| Note generali: | Bibliographic Level Mode of Issuance: Monograph |
| Nota di contenuto: | From the contents: Subordinators: Examples and Applications: Foreword -- Elements on subordinators -- Regenerative property -- Asymptotic behaviour of last passage times -- Rates of growth of local time -- Geometric properties of regenerative sets -- Burgers equation with Brownian initial velocity -- Random covering -- Lévy processes -- Occupation times of a linear Brownian motion -- Lectures on Glauber Dynamics for Discrete Spin Models: Introduction -- Gibbs Measures of Lattice Spin Models -- The Glauber Dynamics -- One Phase Region -- Boundary Phase Transitions -- Phase Coexistence -- Glauber Dynamics for the Dilute Ising Model -- Probability on Trees: An Introductory Climb: Preface -- Basic Definitions and a Few Highlights -- Galton-Watson Trees -- General percolation on a connected graph -- The first-Moment method -- Quasi-independent Percolation -- The second Moment Method -- Electrical Networks -- Infinite Networks -- The Method of Random Paths -- Transience of Percolation Clusters -- Subperiodic Trees -- ..... |
| Sommario/riassunto: | Part I, Bertoin, J.: Subordinators: Examples and Applications: Foreword.- Elements on subordinators.- Regenerative property.- Asymptotic behaviour of last passage times.- Rates of growth of local time.- Geometric properties of regenerative sets.- Burgers equation with Brownian initial velocity.- Random covering.- Lévy processes.- Occupation times of a linear Brownian motion.- Part II, Martinelli, F.: Lectures on Glauber Dynamics for Discrete Spin Models: Introduction.- Gibbs Measures of Lattice Spin Models.- The Glauber Dynamics.- One Phase Region.- Boundary Phase Transitions.- Phase Coexistence.- Glauber Dynamics for the Dilute Ising Model.- Part III, Peres, Yu.: Probability on Trees: An Introductory Climb: Preface.- Basic Definitions and a Few Highlights.- Galton-Watson Trees.- General percolation on a connected graph.- The first-Moment method.- Quasi-independent Percolation.- The second Moment Method.- Electrical Networks.- Infinite Networks.- The Method of Random Paths.- Transience of Percolation Clusters.- Subperiodic Trees.- The Random Walks RW (lambda) .- Capacity.-.Intersection-Equivalence.- Reconstruction for the Ising Model on a Tree,- Unpredictable Paths in Z and EIT in Z3.- Tree-Indexed Processes.- Recurrence for Tree-Indexed Markov Chains.- Dynamical Pecsolation.- Stochastic Domination Between Trees. |
| Titolo autorizzato: | Lectures on probability theory and statistics ![]() |
| ISBN: | 3-540-48115-X |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 996466595203316 |
| Lo trovi qui: | Univ. di Salerno |
| Opac: | Controlla la disponibilità qui |