Vai al contenuto principale della pagina

Machine learning for medical image reconstruction : third International Workshop, MLMIR 2020, held in conjunction with MICCAI 2020, Lima, Peru, October 8, 2020, proceedings / / Farah Deeba [and three others] (editors)



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Machine learning for medical image reconstruction : third International Workshop, MLMIR 2020, held in conjunction with MICCAI 2020, Lima, Peru, October 8, 2020, proceedings / / Farah Deeba [and three others] (editors) Visualizza cluster
Pubblicazione: Cham, Switzerland : , : Springer, , [2020]
©2020
Edizione: 1st ed. 2020.
Descrizione fisica: 1 online resource (VIII, 163 p. 76 illus., 48 illus. in color.)
Disciplina: 616.07540285
Soggetto topico: Diagnostic imaging - Data processing
Persona (resp. second.): DeebaFarah
Note generali: Includes index.
Nota di contenuto: Deep Learning for Magnetic Resonance Imaging -- 3D FLAT: Feasible Learned Acquisition Trajectories for Accelerated MRI -- Deep Parallel MRI Reconstruction Network Without Coil Sensitivities -- Neural Network-based Reconstruction in Compressed Sensing MRI Without Fully-sampled Training Data -- Deep Recurrent Partial Fourier Reconstruction in Diffusion MRI -- Model-based Learning for Quantitative Susceptibility Mapping -- Learning Bloch Simulations for MR Fingerprinting by Invertible Neural Networks -- Weakly-supervised Learning for Single-step Quantitative Susceptibility Mapping -- Data-Consistency in Latent Space and Online Update Strategy to Guide GAN for Fast MRI Reconstruction -- Extending LOUPE for K-space Under-sampling Pattern Optimization in Multi-coil MRI -- AutoSyncoder: An Adversarial AutoEncoder Framework for Multimodal MRI Synthesis -- Deep Learning for General Image Reconstruction -- A deep prior approach to magnetic particle imaging -- End-To-End Convolutional Neural Network for 3D Reconstruction of Knee Bones From Bi-Planar X-Ray Images -- Cellular/Vascular Reconstruction using a Deep CNN for Semantic Image Preprocessing and Explicit Segmentation -- Improving PET-CT Image Segmentation via Deep Multi-Modality Data Augmentation -- Stain Style Transfer of Histopathology Images Via Structure-Preserved Generative Learning.
Sommario/riassunto: This book constitutes the refereed proceedings of the Third International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020. The workshop was held virtually. The 15 papers presented were carefully reviewed and selected from 18 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging and deep learning for general image reconstruction.
Titolo autorizzato: Machine Learning for Medical Image Reconstruction  Visualizza cluster
ISBN: 3-030-61598-7
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996418303303316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Serie: Lecture notes in computer science ; ; 12450.
Artificial Intelligence and Machine Learning for Digital Pathology [[electronic resource] ] : State-of-the-Art and Future Challenges / / edited by Andreas Holzinger, Randy Goebel, Michael Mengel, Heimo Müller
Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016 [[electronic resource] ] : 19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part III / / edited by Sebastien Ourselin, Leo Joskowicz, Mert R. Sabuncu, Gozde Unal, William Wells
Patch-Based Techniques in Medical Imaging [[electronic resource] ] : 4th International Workshop, Patch-MI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings / / edited by Wenjia Bai, Gerard Sanroma, Guorong Wu, Brent C. Munsell, Yiqiang Zhan, Pierrick Coupé
Simulation, Image Processing, and Ultrasound Systems for Assisted Diagnosis and Navigation [[electronic resource] ] : International Workshops, POCUS 2018, BIVPCS 2018, CuRIOUS 2018, and CPM 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16–20, 2018, Proceedings / / edited by Danail Stoyanov, Zeike Taylor, Stephen Aylward, João Manuel R.S. Tavares, Yiming Xiao, Amber Simpson, Anne Martel, Lena Maier-Hein, Shuo Li, Hassan Rivaz, Ingerid Reinertsen, Matthieu Chabanas, Keyvan Farahani
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 [[electronic resource] ] : 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part IV / / edited by Dinggang Shen, Tianming Liu, Terry M. Peters, Lawrence H. Staib, Caroline Essert, Sean Zhou, Pew-Thian Yap, Ali Khan