Vai al contenuto principale della pagina

Non-negative matrix and tensor factorizations : applications to exploratory multiway data analysis and blind source separation / / Andrzej Cichocki ... [et al.]



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Non-negative matrix and tensor factorizations : applications to exploratory multiway data analysis and blind source separation / / Andrzej Cichocki ... [et al.] Visualizza cluster
Pubblicazione: Hoboken, NJ, : John Wiley, 2009
Descrizione fisica: 1 online resource (501 p.)
Disciplina: 005.1
Soggetto topico: Computer algorithms
Data mining
Machine learning
Data structures (Computer science)
Altri autori: CichockiAndrzej  
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: NONNEGATIVE MATRIX AND TENSOR FACTORIZATIONS: APPLICATIONS TO EXPLORATORY MULTI-WAY DATA ANALYSIS AND BLIND SOURCE SEPARATION; Contents; Preface; Acknowledgments; Glossary of Symbols and Abbreviations; 1 Introduction - Problem Statements and Models; 1.1 Blind Source Separation and Linear Generalized Component Analysis; 1.2 Matrix Factorization Models with Nonnegativity and Sparsity Constraints; 1.2.1 Why Nonnegativity and Sparsity Constraints?; 1.2.2 Basic NMF Model; 1.2.3 Symmetric NMF; 1.2.4 Semi-Orthogonal NMF; 1.2.5 Semi-NMF and Nonnegative Factorization of Arbitrary Matrix
1.2.6 Three-factor NMF1.2.7 NMF with Offset (Affine NMF); 1.2.8 Multi-layer NMF; 1.2.9 Simultaneous NMF; 1.2.10 Projective and Convex NMF; 1.2.11 Kernel NMF; 1.2.12 Convolutive NMF; 1.2.13 Overlapping NMF; 1.3 Basic Approaches to Estimate Parameters of Standard NMF; 1.3.1 Large-scale NMF; 1.3.2 Non-uniqueness of NMF and Techniques to Alleviate the Ambiguity Problem; 1.3.3 Initialization of NMF; 1.3.4 Stopping Criteria; 1.4 Tensor Properties and Basis of Tensor Algebra; 1.4.1 Tensors (Multi-way Arrays) - Preliminaries; 1.4.2 Subarrays, Tubes and Slices; 1.4.3 Unfolding - Matricization
1.4.4 Vectorization1.4.5 Outer, Kronecker, Khatri-Rao and Hadamard Products; 1.4.6 Mode-n Multiplication of Tensor by Matrix and Tensor by Vector, Contracted Tensor Product; 1.4.7 Special Forms of Tensors; 1.5 Tensor Decompositions and Factorizations; 1.5.1 Why Multi-way Array Decompositions and Factorizations?; 1.5.2 PARAFAC and Nonnegative Tensor Factorization; 1.5.3 NTF1 Model; 1.5.4 NTF2 Model; 1.5.5 Individual Differences in Scaling (INDSCAL) and Implicit Slice Canonical Decomposition Model (IMCAND); 1.5.6 Shifted PARAFAC and Convolutive NTF; 1.5.7 Nonnegative Tucker Decompositions
1.5.8 Block Component Decompositions1.5.9 Block-Oriented Decompositions; 1.5.10 PARATUCK2 and DEDICOM Models; 1.5.11 Hierarchical Tensor Decomposition; 1.6 Discussion and Conclusions; Appendix 1.A: Uniqueness Conditions for Three-way Tensor Factorizations; Appendix 1.B: Singular Value Decomposition (SVD) and Principal Component Analysis (PCA) with Sparsity and/or Nonnegativity Constraints; 1.B.1 Standard SVD and PCA; 1.B.2 Sparse PCA; 1.B.3 Nonnegative PCA; Appendix 1.C: Determining a True Number of Components
Appendix 1.D: Nonnegative Rank Factorization Using Wedderborn Theorem - Estimation of the Number of ComponentsReferences; 2 Similarity Measures and Generalized Divergences; 2.1 Error-induced Distance and Robust Regression Techniques; 2.2 Robust Estimation; 2.3 Csiszár Divergences; 2.4 Bregman Divergence; 2.4.1 Bregman Matrix Divergences; 2.5 Alpha-Divergences; 2.5.1 Asymmetric Alpha-Divergences; 2.5.2 Symmetric Alpha-Divergences; 2.6 Beta-Divergences; 2.7 Gamma-Divergences; 2.8 Divergences Derived from Tsallis and Rényi Entropy; 2.8.1 Concluding Remarks
Appendix 2.A: Information Geometry, Canonical Divergence, and Projection
Sommario/riassunto: This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMF's various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). NMF/NTF and their extensions are increasingly used as tools in signal and image processing, and data analysis, having garnered interest due to their capability to provide new insights and relevant information about the complex latent relationships in experimental data sets. It is suggested that NMF can provide meaningful components
Titolo autorizzato: Non-negative matrix and tensor factorizations  Visualizza cluster
ISBN: 9786612688331
9781282688339
1282688332
9780470747278
0470747277
9780470747285
0470747285
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9911019146803321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui