Vai al contenuto principale della pagina
| Autore: |
Chinesta Francisco
|
| Titolo: |
A Gentle Introduction to Data, Learning, and Model Order Reduction : Techniques and Twinning Methodologies / / by Francisco Chinesta, Elías Cueto, Victor Champaney, Chady Ghnatios, Amine Ammar, Nicolas Hascoët, David González, Icíar Alfaro, Daniele Di Lorenzo, Angelo Pasquale, Dominique Baillargeat
|
| Pubblicazione: | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025 |
| Edizione: | 1st ed. 2025. |
| Descrizione fisica: | 1 online resource (XVI, 227 p. 33 illus., 29 illus. in color.) |
| Disciplina: | 006.3 |
| Soggetto topico: | Computational intelligence |
| Mathematics - Data processing | |
| Machine learning | |
| Computational Intelligence | |
| Computational Science and Engineering | |
| Machine Learning | |
| Persona (resp. second.): | CuetoElías |
| ChampaneyVictor | |
| GhnatiosChady | |
| AmmarAmine | |
| HascoëtNicolas | |
| GonzálezDavid | |
| AlfaroIcíar | |
| Di LorenzoDaniele | |
| PasqualeAngelo | |
| BaillargeatDominique | |
| Nota di contenuto: | Abstract -- Extended summary -- Part 1.Around Data -- Part 2.Around Learning -- Part 3. Around Reduction -- Part 4. Around Data Assimilation & Twinning. |
| Sommario/riassunto: | This open access book explores the latest advancements in simulation performance, driven by model order reduction, informed and augmented machine learning technologies and their combination into the so-called hybrid digital twins. It provides a comprehensive review of three key frameworks shaping modern engineering simulations: physics-based models, data-driven approaches, and hybrid techniques that integrate both. The book examines the limitations of traditional models, the role of data acquisition in uncovering underlying patterns, and how physics-informed and augmented learning techniques contribute to the development of digital twins. Organized into four sections—Around Data, Around Learning, Around Reduction, and Around Data Assimilation & Twinning—this book offers an essential resource for researchers, engineers, and students seeking to understand and apply cutting-edge simulation methodologies. |
| Titolo autorizzato: | A Gentle Introduction to Data, Learning, and Model Order Reduction ![]() |
| ISBN: | 3-031-87572-9 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9911015966303321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |