Vai al contenuto principale della pagina

A Gentle Introduction to Data, Learning, and Model Order Reduction : Techniques and Twinning Methodologies / / by Francisco Chinesta, Elías Cueto, Victor Champaney, Chady Ghnatios, Amine Ammar, Nicolas Hascoët, David González, Icíar Alfaro, Daniele Di Lorenzo, Angelo Pasquale, Dominique Baillargeat



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Chinesta Francisco Visualizza persona
Titolo: A Gentle Introduction to Data, Learning, and Model Order Reduction : Techniques and Twinning Methodologies / / by Francisco Chinesta, Elías Cueto, Victor Champaney, Chady Ghnatios, Amine Ammar, Nicolas Hascoët, David González, Icíar Alfaro, Daniele Di Lorenzo, Angelo Pasquale, Dominique Baillargeat Visualizza cluster
Pubblicazione: Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Edizione: 1st ed. 2025.
Descrizione fisica: 1 online resource (XVI, 227 p. 33 illus., 29 illus. in color.)
Disciplina: 006.3
Soggetto topico: Computational intelligence
Mathematics - Data processing
Machine learning
Computational Intelligence
Computational Science and Engineering
Machine Learning
Persona (resp. second.): CuetoElías
ChampaneyVictor
GhnatiosChady
AmmarAmine
HascoëtNicolas
GonzálezDavid
AlfaroIcíar
Di LorenzoDaniele
PasqualeAngelo
BaillargeatDominique
Nota di contenuto: Abstract -- Extended summary -- Part 1.Around Data -- Part 2.Around Learning -- Part 3. Around Reduction -- Part 4. Around Data Assimilation & Twinning.
Sommario/riassunto: This open access book explores the latest advancements in simulation performance, driven by model order reduction, informed and augmented machine learning technologies and their combination into the so-called hybrid digital twins. It provides a comprehensive review of three key frameworks shaping modern engineering simulations: physics-based models, data-driven approaches, and hybrid techniques that integrate both. The book examines the limitations of traditional models, the role of data acquisition in uncovering underlying patterns, and how physics-informed and augmented learning techniques contribute to the development of digital twins. Organized into four sections—Around Data, Around Learning, Around Reduction, and Around Data Assimilation & Twinning—this book offers an essential resource for researchers, engineers, and students seeking to understand and apply cutting-edge simulation methodologies.
Titolo autorizzato: A Gentle Introduction to Data, Learning, and Model Order Reduction  Visualizza cluster
ISBN: 3-031-87572-9
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9911015966303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Studies in Big Data, . 2197-6511 ; ; 174